yes
Yes, iron and chlorine can form an ionic compound. When iron loses electrons to form Fe^3+ ions and chlorine gains electrons to form Cl^- ions, they can combine to form the ionic compound iron(III) chloride (FeCl3).
Yes, iron and chlorine can form an ionic compound called iron (III) chloride, where iron has a +3 charge and chlorine has a -1 charge. In this compound, the iron atom transfers three electrons to three chlorine atoms to achieve stability.
Yes, iron and chlorine can form an ionic compound called iron(III) chloride, with the chemical formula FeCl3. In this compound, iron loses electrons to chlorine to form Fe3+ ions and Cl- ions, resulting in an overall neutral compound.
Yes, iron and chlorine can form an ionic compound. Iron can lose electrons to form Fe^2+ or Fe^3+ ions, while chlorine can gain electrons to form Cl^- ions. The resulting compound would be iron(II) chloride (FeCl2) or iron(III) chloride (FeCl3), depending on the charge of the iron ion.
Yes, iron and chlorine can form ionic compounds. When iron reacts with chlorine, it can lose electrons to form the Fe^3+ ion, while chlorine can gain electrons to form the Cl^- ion. These ions then combine to form the ionic compound iron(III) chloride (FeCl3).
Yes, iron and chlorine can form an ionic compound. When iron loses electrons to form Fe^3+ ions and chlorine gains electrons to form Cl^- ions, they can combine to form the ionic compound iron(III) chloride (FeCl3).
Yes, iron and chlorine can form an ionic compound called iron (III) chloride, where iron has a +3 charge and chlorine has a -1 charge. In this compound, the iron atom transfers three electrons to three chlorine atoms to achieve stability.
Yes, iron and chlorine can form an ionic compound called iron(III) chloride, with the chemical formula FeCl3. In this compound, iron loses electrons to chlorine to form Fe3+ ions and Cl- ions, resulting in an overall neutral compound.
Yes, iron and chlorine can form an ionic compound. Iron can lose electrons to form Fe^2+ or Fe^3+ ions, while chlorine can gain electrons to form Cl^- ions. The resulting compound would be iron(II) chloride (FeCl2) or iron(III) chloride (FeCl3), depending on the charge of the iron ion.
Yes, iron and chlorine can form ionic compounds. When iron reacts with chlorine, it can lose electrons to form the Fe^3+ ion, while chlorine can gain electrons to form the Cl^- ion. These ions then combine to form the ionic compound iron(III) chloride (FeCl3).
Chlorine oxide would be a covalent compound, and not an ionic compound.
Yes, iron and chlorine would form an ionic compound. Iron, a metal, would lose electrons to form Fe^2+ ions, while chlorine, a non-metal, would gain electrons to form Cl^- ions. These oppositely charged ions would then attract each other to form an ionic compound, likely iron (II) chloride with the formula FeCl2.
The non-metal present in iron chloride is chlorine. Iron chloride is a compound composed of iron (a metal) and chlorine (a non-metal). Chlorine contributes its electrons to form ionic bonds with iron in iron chloride.
FeCl3 contains an ionic bond. Iron (Fe) is a metal, which donates electrons to chlorine (Cl), a nonmetal, resulting in the formation of an ionic compound.
Yes, chlorine and potassium can form an ionic compound called potassium chloride. In this compound, potassium, which is a metal, donates its electron to chlorine, a nonmetal, to form an ionic bond.
Chlorine gas (Cl2) is covalent.
Iron oxide is an ionic compound.