The bromine test (discoloration) is valid for compounds with double or triple bonds between carbon atoms and for phenols. This is a simple and common experiment.
Alkynes can decolourize bromine water due to the addition reaction that occurs. The bromine molecules add across the carbon-carbon triple bond in the alkyne, forming a colorless dibromoalkane product. This reaction is specific to alkynes and does not occur with alkenes or alkanes.
You will see Aqueous Bromine or Bromine water
Chlorine reacts with aqueous potassium bromide to displace bromine due to its higher reactivity. This displacement reaction is known as a redox reaction because chlorine is being reduced while bromine is being oxidized. The resulting products are potassium chloride and bromine.
When butene decolourises bromine solution, it indicates that an addition reaction has occurred. The double bond in butene breaks, and the bromine molecules add across the two carbon atoms that were originally part of the double bond. This forms a colorless dibromide compound, causing the bromine solution to lose its characteristic orange color.
If ethene is shaken with bromine water, the orange color of bromine water will be decolorized due to the addition reaction of bromine to ethene. This reaction results in the formation of a colorless compound called 1,2-dibromoethane.
The reaction between aqueous chlorine and sodium bromide solution results in the displacement of bromine by chlorine, forming sodium chloride and bromine gas as products. This is a redox reaction where chlorine is reduced and bromine is oxidized.
The bromine oxidizes iodide ions to produce iodine and bromide ions. The overall reaction is 2I- + Br2 → I2 + 2Br-.
The reaction between bromine and aqueous strontium iodide is a double displacement reaction. Bromine replaces iodide in strontium iodide, forming strontium bromide and iodine. The balanced chemical equation is: Br2 + SrI2 --> SrBr2 + I2.
When sodium chloride and bromine water are mixed, a red-brown color will develop due to the reaction between bromine and chloride ions. This reaction forms bromide ions and an aqueous solution of sodium bromide.
When ethene reacts with bromine in an aqueous solution of sodium chloride, the bromine adds across the carbon-carbon double bond in ethene through electrophilic addition. This reaction forms a dibromoethane product. The presence of sodium chloride in the aqueous solution helps to generate hypobromous acid, which is the active bromine species that reacts with ethene. This reaction is an example of halogenation of alkenes.
Alkynes can decolourize bromine water due to the addition reaction that occurs. The bromine molecules add across the carbon-carbon triple bond in the alkyne, forming a colorless dibromoalkane product. This reaction is specific to alkynes and does not occur with alkenes or alkanes.
Hex-1-ene reacts with aqueous bromine in an addition reaction to form 1,2-dibromohexane. During the reaction, bromine adds across the double bond of hex-1-ene to give a product with two bromine atoms on adjacent carbons.
You will see Aqueous Bromine or Bromine water
Chlorine reacts with aqueous potassium bromide to displace bromine due to its higher reactivity. This displacement reaction is known as a redox reaction because chlorine is being reduced while bromine is being oxidized. The resulting products are potassium chloride and bromine.
Chlorine is a stronger oxidizer than elemental Bromine. So, when yellowish chlorine gas is bubbled through the Bromide solution, a red colour is formed which is Bromine. Chlorine oxidizes Bromide ions to elemental Bromine while itself is reduced to Chloride ions. So, the total reaction is: Cl2 + Br- ----> Br2 + Cl-
When aqueous bromine is added to sodium chloride, bromine will displace chlorine to form sodium bromide and release chlorine gas. This reaction is a displacement reaction where a more reactive element, bromine, displaces a less reactive element, chlorine.
Bromine is prepared by a method which comprises contacting hydrogen peroxide with an aqueous solution containing bromide ion and rapidly removing the bromine as it is formed. This method is particularly suitable for obtaining bromine from seawater, using the conventional intermediate, bromosulfuric solution.