Four times the atomic weight of carbon plus sixteen times the atomic weight of hydrogen = about 64 grams.
To determine the moles of carbon dioxide produced from the combustion of methane, we first need to balance the chemical equation for the combustion of methane: CH4 + 2O2 → CO2 + 2H2O. From the balanced equation, we see that 1 mole of methane produces 1 mole of carbon dioxide. The molar mass of methane (CH4) is 16.05 g/mol, and the molar mass of carbon dioxide (CO2) is 44.01 g/mol. Therefore, 100.0 grams of methane is equivalent to 100.0 g / 16.05 g/mol = 6.23 moles of methane, which would produce 6.23 moles of carbon dioxide.
To calculate the mass of four moles of methane (CH4), we first need to determine the molar mass of methane. The molar mass of CH4 is the sum of the atomic masses of carbon (12.01 g/mol) and hydrogen (1.008 g/mol) multiplied by the number of atoms in the compound. Therefore, the molar mass of CH4 is 12.01 g/mol + 4(1.008 g/mol) = 16.04 g/mol. To find the mass of four moles of methane, we multiply the molar mass by the number of moles: 16.04 g/mol x 4 mol = 64.16 grams. Therefore, four moles of methane would have a mass of 64.16 grams.
1) First find the number of moles of methane in 27.8 g using the molar mass.See the Related Question to the left of this answer "How do you convert from grams to moles and also from moles to grams?" to do that.2) Then write the balanced reaction. Methane (CH4) reacts with oxygen (O2) to form carbon dioxide (CO2) and water (H2O). See the related question "How do you balance a chemical reaction?" to do that.3) That will tell you the ratio of moles of methane to moles of oxygen (it will be 2 to 1). So from Part 1, multiply the number of moles of methane by 2 to get moles of oxygen. Then, use the Ideal Gas Law to find out how many liters that will take up at STP. Use the Related Question link "How do you solve Ideal Gas Law problems?" to do that.
The formula for aluminum oxide is Al2O3, which means that, if aluminum oxide is ionically bonded, every formula mass of aluminum oxide contains three O-2 ions. In this instance, 0.65 formula masses of aluminum oxide would contain 3 X 0.65 or 1.95 moles of O2-. If aluminum oxide were covalently bonded, it would not contain any O-2 ions.
To find the volume of the solution, first calculate the moles of NaCl in 0.500 g using its molar mass. Then, use the concentration to determine the volume using the formula: moles = molarity x volume. Rearrange the formula to solve for volume, which would be moles / molarity. Substituting the moles of NaCl and the concentration into the formula will give you the volume of the solution.
You would need to know the chemiscal formal for methane, X the numbers of mole.
To determine the moles of carbon dioxide produced from the combustion of methane, we first need to balance the chemical equation for the combustion of methane: CH4 + 2O2 → CO2 + 2H2O. From the balanced equation, we see that 1 mole of methane produces 1 mole of carbon dioxide. The molar mass of methane (CH4) is 16.05 g/mol, and the molar mass of carbon dioxide (CO2) is 44.01 g/mol. Therefore, 100.0 grams of methane is equivalent to 100.0 g / 16.05 g/mol = 6.23 moles of methane, which would produce 6.23 moles of carbon dioxide.
To calculate the mass of four moles of methane (CH4), we first need to determine the molar mass of methane. The molar mass of CH4 is the sum of the atomic masses of carbon (12.01 g/mol) and hydrogen (1.008 g/mol) multiplied by the number of atoms in the compound. Therefore, the molar mass of CH4 is 12.01 g/mol + 4(1.008 g/mol) = 16.04 g/mol. To find the mass of four moles of methane, we multiply the molar mass by the number of moles: 16.04 g/mol x 4 mol = 64.16 grams. Therefore, four moles of methane would have a mass of 64.16 grams.
2344222.445
To solve this problem, you would first calculate the moles of methane gas using the ideal gas law. Once you have the moles of methane, you would use the stoichiometry of the combustion reaction to find the moles of steam produced. Finally, you would convert the moles of steam to the appropriate volume at the given conditions of temperature and pressure using the ideal gas law again.
Methane reacts with oxygen in the following way. CH4 + 3 O2 --> CO2 + 4 H2O. If 5 moles of oxygen react with 2.8 moles of methane, only 1.67 moles of methane would be consumed because of the molar ratio 1:3. This would produce 1.67 moles of carbon dioxide and 6.67 moles of water.
1) First find the number of moles of methane in 27.8 g using the molar mass.See the Related Question to the left of this answer "How do you convert from grams to moles and also from moles to grams?" to do that.2) Then write the balanced reaction. Methane (CH4) reacts with oxygen (O2) to form carbon dioxide (CO2) and water (H2O). See the related question "How do you balance a chemical reaction?" to do that.3) That will tell you the ratio of moles of methane to moles of oxygen (it will be 2 to 1). So from Part 1, multiply the number of moles of methane by 2 to get moles of oxygen. Then, use the Ideal Gas Law to find out how many liters that will take up at STP. Use the Related Question link "How do you solve Ideal Gas Law problems?" to do that.
0.688 moles*6.02x1023=4.14x1023 Formula units
The chemical formula for methane is CH4. It is composed of one carbon atom bonded to four hydrogen atoms. Carbon tetrahydride is not a commonly used name for methane.
16.0 grams of methane (CH4) is equivalent to about 0.92 moles of methane, since the molar mass of methane is approximately 16.04 g/mol. In terms of molecules, this would be approximately 5.53 x 10^22 molecules of methane.
Multiply moles by molecular mass of water (18), gives you 223.8g. Remember this formula: Number of moles = mass / molecular mass
Quinine is a drug with chemical formula C20H24N2O2. In each molecule of quinine there are 20 carbon atoms. Thus in 4.0 moles of quinine, there would be 80 moles of carbon.