.. then
EITHER the pressure is halved for the same amount (moles) of gas,
OR
the amount (moles) of gas is doubled at the same pressure,
OR
any valid combination of these possibillities.
If the volume is doubled and the number of molecules is doubled while the temperature is held constant, the pressure of the gas sample will remain the same. This is because both the volume and the number of molecules increased by the same factor, resulting in no net change in pressure according to the ideal gas law.
Charles Law (also known as the law of volumes) describes how gases tend to expand or contract with temperature changes.If the temperature changes and the gas molecules and pressure remains the same then the volume will increase or decrease at the same rate that the temperature changes.Since the temperature doubled the volume will double to 6L.
If the volume of the cylinder is reduced while the temperature remains constant, the pressure inside the cylinder will increase. This relationship is described by Boyle's Law, which states that pressure and volume are inversely proportional at constant temperature.
The gas volume become constant when the pressure is increased to a point that makes the distance between the gas molecules equal to zero at this point no more increase of temperature with pressure is observed. Or if the pressure and temperature are kept constant within a system then the volume can also be constant as long as you are able to maintain the pressure and temperature at constant level.
Boyle's Law is the inverse relationship of pressure and volume with temperature remaining constant. Charles' Law is the direct relationship of temperature and volume with pressure remaining constant. Gay-Lussac's Law is the direct relationshipof pressure and temperature with volume remaining constant. The Combined Gas Law relates all three - volume, pressure, and temperature.
If the volume is doubled and the number of molecules is doubled while the temperature is held constant, the pressure of the gas sample will remain the same. This is because both the volume and the number of molecules increased by the same factor, resulting in no net change in pressure according to the ideal gas law.
The volume doubles
Charles Law (also known as the law of volumes) describes how gases tend to expand or contract with temperature changes.If the temperature changes and the gas molecules and pressure remains the same then the volume will increase or decrease at the same rate that the temperature changes.Since the temperature doubled the volume will double to 6L.
The volume is doubled.
When the temperature of a gas is raised while keeping its pressure constant, the volume of the gas will also increase. This is described by Charles's Law, which states that the volume of a gas is directly proportional to its temperature when pressure is held constant.
If the volume of the cylinder is reduced while the temperature remains constant, the pressure inside the cylinder will increase. This relationship is described by Boyle's Law, which states that pressure and volume are inversely proportional at constant temperature.
Volume ChangesThe volume of any solid, liquid, or gas will change with changes in temperature.
When the volume of a gas is increased, the pressure of the gas decreases while the temperature remains constant, assuming the gas is behaving ideally. This relationship is described by Boyle's Law, which states that pressure is inversely proportional to volume at constant temperature.
The gas volume become constant when the pressure is increased to a point that makes the distance between the gas molecules equal to zero at this point no more increase of temperature with pressure is observed. Or if the pressure and temperature are kept constant within a system then the volume can also be constant as long as you are able to maintain the pressure and temperature at constant level.
The isothermal process describes the pressure volume relationship at a constant temperature. In an isothermal process, the temperature remains constant throughout the system while work is done.
Boyle's Law is the inverse relationship of pressure and volume with temperature remaining constant. Charles' Law is the direct relationship of temperature and volume with pressure remaining constant. Gay-Lussac's Law is the direct relationshipof pressure and temperature with volume remaining constant. The Combined Gas Law relates all three - volume, pressure, and temperature.
It is halved. coz voltage=current * resistance