answersLogoWhite

0

In the chair conformation of a molecule, cis isomers have substituents on the same side of the ring, while trans isomers have substituents on opposite sides of the ring.

User Avatar

AnswerBot

5mo ago

What else can I help you with?

Continue Learning about Chemistry

What makes cis and trans isomers possible?

Cis and trans isomers are possible due to restricted rotation around a double bond. In cis isomers, the functional groups are on the same side of the molecule, while in trans isomers, they are on opposite sides. This difference in spatial arrangement leads to different physical and chemical properties between the two isomers.


Are alpha and beta glucose structural isomers?

no they are not. they are stereoisomers(configurational) Structural isomers. isomers that differ in the arrangement literally. so the difference between the cylic glucose molecule that is a ring and the non ring glucose. these two are structural isomers. if molecule A and B have the same molecular formula but look different and are thus arranged differently they are structural isomers. conformational isomers. these are isomers that differ from each other simply by the rotation around a single bond. if molecule B can be twisted around the single bonds to get molecule A then A and B are conformational isomers. configurational isomers (stereoisomers). if molecules A and B do not fall into the above two categories, then they are stereoisomers. these type of isomers differ in the spatial arrangement of atoms. so if molecule A was the mirror image of molecule B then these two molecules would be a type of stereoisomers called (Enantiomers). for alpha glucose the OH group attached to the anomeric carbon is not the same as teh CH2OH group on the other side of the hemiacetal( on the other side of the ether oxygen.). ie. if the OH is axial down then the CH2OH is equatorial up. and vice versa. the molecule is beta glucose when these two substituents are the same in this aspect. both either equatorial or axial. the difference between axial and equatorial is spatial adn in the arrangement of atoms connected to the carbon ring and solely a difference in this aspect (alpha or beta) means the molecules are stereoisomers.


What is the difference between the chair conformations of cis and trans isomers in organic chemistry?

In organic chemistry, the difference between the chair conformations of cis and trans isomers lies in the orientation of substituents on the cyclohexane ring. In the cis isomer, the substituents are on the same side of the ring, leading to steric hindrance and potential clashes. In the trans isomer, the substituents are on opposite sides, resulting in a more stable conformation with less steric hindrance.


What is the difference between constitutional isomers and conformational isomers in organic chemistry?

Constitutional isomers have different molecular structures, while conformational isomers have the same structure but differ in the arrangement of atoms in space.


How many different isomers do c3h12 have?

C3H12 can have two different isomers: n-propane, which is a straight chain molecule, and isobutane, which is a branched molecule.

Related Questions

What is the difference between isomers and isomerism?

a fart


What makes cis and trans isomers possible?

Cis and trans isomers are possible due to restricted rotation around a double bond. In cis isomers, the functional groups are on the same side of the molecule, while in trans isomers, they are on opposite sides. This difference in spatial arrangement leads to different physical and chemical properties between the two isomers.


Are alpha and beta glucose structural isomers?

no they are not. they are stereoisomers(configurational) Structural isomers. isomers that differ in the arrangement literally. so the difference between the cylic glucose molecule that is a ring and the non ring glucose. these two are structural isomers. if molecule A and B have the same molecular formula but look different and are thus arranged differently they are structural isomers. conformational isomers. these are isomers that differ from each other simply by the rotation around a single bond. if molecule B can be twisted around the single bonds to get molecule A then A and B are conformational isomers. configurational isomers (stereoisomers). if molecules A and B do not fall into the above two categories, then they are stereoisomers. these type of isomers differ in the spatial arrangement of atoms. so if molecule A was the mirror image of molecule B then these two molecules would be a type of stereoisomers called (Enantiomers). for alpha glucose the OH group attached to the anomeric carbon is not the same as teh CH2OH group on the other side of the hemiacetal( on the other side of the ether oxygen.). ie. if the OH is axial down then the CH2OH is equatorial up. and vice versa. the molecule is beta glucose when these two substituents are the same in this aspect. both either equatorial or axial. the difference between axial and equatorial is spatial adn in the arrangement of atoms connected to the carbon ring and solely a difference in this aspect (alpha or beta) means the molecules are stereoisomers.


Can molecular formula be used to show difference between isomers?

No, molecular formula alone cannot show the difference between isomers. Isomers have the same molecular formula but different structural arrangements of atoms. Additional information, such as structural formula or connectivity of atoms, is needed to differentiate between isomers.


What is the difference between the chair conformations of cis and trans isomers in organic chemistry?

In organic chemistry, the difference between the chair conformations of cis and trans isomers lies in the orientation of substituents on the cyclohexane ring. In the cis isomer, the substituents are on the same side of the ring, leading to steric hindrance and potential clashes. In the trans isomer, the substituents are on opposite sides, resulting in a more stable conformation with less steric hindrance.


What is the difference between constitutional isomers and conformational isomers in organic chemistry?

Constitutional isomers have different molecular structures, while conformational isomers have the same structure but differ in the arrangement of atoms in space.


How many different isomers do c3h12 have?

C3H12 can have two different isomers: n-propane, which is a straight chain molecule, and isobutane, which is a branched molecule.


Why is the internal energy of cis isomers bigger than of trans isomers?

Cis isomers have higher internal energy compared to trans isomers due to the steric hindrance caused by the proximity of bulky substituents in the cis configuration. This leads to increased strain and repulsion between the atoms, resulting in higher internal energy. Trans isomers, on the other hand, have a more stable conformation with less steric hindrance.


What is the key difference between constitutional and conformational isomers in organic chemistry?

The key difference between constitutional and conformational isomers in organic chemistry is that constitutional isomers have different connectivity of atoms in their molecular structure, while conformational isomers have the same connectivity of atoms but differ in the spatial arrangement of atoms due to rotation around single bonds.


What is the relationship between the erythro and threo isomers in organic chemistry?

In organic chemistry, erythro and threo isomers are diastereomers that have a specific relationship based on the orientation of substituents around a molecule's central carbon atoms. Erythro isomers have similar groups on the same side of the molecule, while threo isomers have similar groups on opposite sides. These isomers have different physical and chemical properties due to their distinct spatial arrangements.


What is the difference between erythro and threo isomers in organic chemistry?

Erythro and threo isomers are types of stereoisomers in organic chemistry. The main difference between them lies in the arrangement of substituents around a double bond. In erythro isomers, similar substituents are on the same side of the double bond, while in threo isomers, similar substituents are on opposite sides of the double bond.


What is the difference between cis and trans isomers in cyclohexane molecules?

Cis and trans isomers in cyclohexane molecules differ in the spatial arrangement of their substituent groups. In cis isomers, the substituent groups are on the same side of the ring, while in trans isomers, they are on opposite sides. This difference affects the physical and chemical properties of the molecules.