blue
Anhydrous copper sulfate is white powder, heating makes no difference.
When blue copper sulphate is heated, it loses water molecules and converts to anhydrous copper sulfate, which is white in color. The blue color of copper sulfate is due to the presence of water molecules in its crystal structure.
When copper sulfate pentahydrate is heated, it undergoes a dehydration reaction where the water molecules are released, leaving behind anhydrous copper sulfate. This process is reversible, and when anhydrous copper sulfate is exposed to moisture, it will reabsorb water and form copper sulfate pentahydrate again.
The formula of the blue crystals of copper sulphate is CuSO4.5H2O. When they are heated mildly, the water from the crystals evaporate, giving just CuSO4. This 'anhydrous' form of copper (II) sulphate is white in colour.
When heated blue copper sulphate solution does evaporate!!!! The result is BLUE copper sulphate crystals of the penta-hydrate (CuSO4.5H2O). If you continue to heat these blue crystals, they will turn white in colour as you drive off the water of hydration. CuSO4.5H2O(s)(Blue) ==heat==> CuSO4(s)(white) + 5H2O(g) The analogy of hydration is like holding a ball in your hand. Your hand is the copper sulphate, and the ball is the water. Open your hand (heat) and the ball falls away(water is released). Your hand and the ball remain separate objects (NOT combined). Similarly the copper sulphate and the water remain separate molecules (NOT combined). It's just that the one is held (in the crystal lattice), by the other.,
it is like the color but gold more
Anhydrous copper sulfate is white powder, heating makes no difference.
When blue copper sulfate crystals are heated, the water of crystallization evaporates, turning the blue crystals white. This is due to the loss of water molecules, resulting in anhydrous copper sulfate.
When copper sulfate is heated, it undergoes thermal decomposition, turning into copper oxide, sulfur dioxide gas, and oxygen gas. The color of the compound changes from blue to black as the heating process progresses.
they dissolve or dilute
When blue copper sulphate is heated, it loses water molecules and converts to anhydrous copper sulfate, which is white in color. The blue color of copper sulfate is due to the presence of water molecules in its crystal structure.
The reaction is;CuSO4 = CuO + SO3
copper sulphate and hydrogen is released.
When copper sulfate pentahydrate is heated, it undergoes a dehydration reaction where the water molecules are released, leaving behind anhydrous copper sulfate. This process is reversible, and when anhydrous copper sulfate is exposed to moisture, it will reabsorb water and form copper sulfate pentahydrate again.
The formula of the blue crystals of copper sulphate is CuSO4.5H2O. When they are heated mildly, the water from the crystals evaporate, giving just CuSO4. This 'anhydrous' form of copper (II) sulphate is white in colour.
It turns greenish.
When copper sulfate and sodium hydroxide are heated together, a series of chemical reactions occur. Initially, the copper sulfate decomposes to form copper oxide, water, and sulfur dioxide gas. Then, the copper oxide reacts with sodium hydroxide to form a blue precipitate of copper hydroxide.