Factors affecting solubility:
1. the nature of solute/solvent (chemical composition, polarity)
2. temperature
3. pressure
4. stirring
5. surface area of the solute
6. some added compounds
7. amount of the solute 8. the geometry of the beaker
To determine if a solution is hypertonic or hypotonic, you need to compare the concentration of solutes in the solution to the concentration of solutes in the surrounding environment. If the solution has a higher concentration of solutes than the surrounding environment, it is hypertonic. If the solution has a lower concentration of solutes than the surrounding environment, it is hypotonic.
You can determine if a solution is hypotonic, hypertonic, or isotonic by comparing the concentration of solutes in the solution to the concentration of solutes in the surrounding environment. If the solution has a lower concentration of solutes than the surrounding environment, it is hypotonic. If the solution has a higher concentration of solutes, it is hypertonic. If the concentrations are equal, the solution is isotonic.
One can determine if a solution is hypertonic, hypotonic, or isotonic by comparing the concentration of solutes in the solution to the concentration of solutes in the surrounding environment. If the solution has a higher concentration of solutes than the surrounding environment, it is hypertonic. If the solution has a lower concentration of solutes, it is hypotonic. If the concentrations are equal, it is isotonic.
The principle of "like dissolves like" states that substances with similar polarity and intermolecular forces are more likely to dissolve in each other. For example, polar solutes dissolve better in polar solvents, while nonpolar solutes dissolve better in nonpolar solvents. This is because molecules with similar interactions can more easily mix at a molecular level, increasing solubility.
In a gaseous solution, both the solute and solvent are in the gaseous state. The solute molecules are dispersed within the gas molecules of the solvent. The solute particles interact with the solvent particles to form a homogeneous mixture.
Generally polar solutes are dissolved in polar solvents and nonpolar solutes are dissolved in nonpolar solvents.
Generally polar solutes are dissolved in polar solvents and nonpolar solutes are dissolved in nonpolar solvents.
water
To determine if a solution is hypertonic or hypotonic, you need to compare the concentration of solutes in the solution to the concentration of solutes in the surrounding environment. If the solution has a higher concentration of solutes than the surrounding environment, it is hypertonic. If the solution has a lower concentration of solutes than the surrounding environment, it is hypotonic.
For example soda, beer, champagne and all fizzy drinks are solutions of carbon dioxide in water.
You can determine if a solution is hypotonic, hypertonic, or isotonic by comparing the concentration of solutes in the solution to the concentration of solutes in the surrounding environment. If the solution has a lower concentration of solutes than the surrounding environment, it is hypotonic. If the solution has a higher concentration of solutes, it is hypertonic. If the concentrations are equal, the solution is isotonic.
One can determine if a solution is hypertonic, hypotonic, or isotonic by comparing the concentration of solutes in the solution to the concentration of solutes in the surrounding environment. If the solution has a higher concentration of solutes than the surrounding environment, it is hypertonic. If the solution has a lower concentration of solutes, it is hypotonic. If the concentrations are equal, it is isotonic.
Only using methods of analytical chemistry.
The principle of "like dissolves like" states that substances with similar polarity and intermolecular forces are more likely to dissolve in each other. For example, polar solutes dissolve better in polar solvents, while nonpolar solutes dissolve better in nonpolar solvents. This is because molecules with similar interactions can more easily mix at a molecular level, increasing solubility.
In a gaseous solution, both the solute and solvent are in the gaseous state. The solute molecules are dispersed within the gas molecules of the solvent. The solute particles interact with the solvent particles to form a homogeneous mixture.
Not necessarily. It may also be a gas or a solid. In any mixture, the component that is present in the largest proportion is known as a solvent. For example, in our atmosphere, Nitrogen (78% by volume) is the solvent. This is a gaseous mixture.
1. Liquid carbon dioxide (supercritical CO2) is used as solvent. 2. Gaseous carbon dioxide can be a solvent in water or other liquids.