Water and potassium sulfate
The chemical equation is not balanced. A balanced equation would be: KOH + H2SO4 -> KHSO4 + H2O
First, calculate the number of moles of H2SO4: Moles H2SO4 = volume (L) * concentration (mol/L) Next, use the balanced equation to determine the mole ratio between H2SO4 and KOH. The balanced equation is H2SO4 + 2KOH -> K2SO4 + 2H2O. Then, calculate the molarity of KOH: Molarity KOH = moles of KOH / volume of KOH solution (L)
The balanced chemical equation between potassium hydroxide (KOH) and sulfuric acid (H2SO4) is: 2 KOH + H2SO4 -> K2SO4 + 2 H2O This equation shows that 2 moles of KOH react with 1 mole of H2SO4 to produce 1 mole of K2SO4 and 2 moles of water.
The chemical equation for the reaction between potassium hydroxide (KOH) and sulfuric acid (H2SO4) is: 2KOH + H2SO4 → K2SO4 + 2H2O.
The balanced neutralization reaction between sulfuric acid (H2SO4) and potassium hydroxide (KOH) in aqueous solution is: H2SO4 + 2KOH -> K2SO4 + 2H2O
The chemical equation is not balanced. A balanced equation would be: KOH + H2SO4 -> KHSO4 + H2O
k2so4+hno2
First, calculate the number of moles of H2SO4: Moles H2SO4 = volume (L) * concentration (mol/L) Next, use the balanced equation to determine the mole ratio between H2SO4 and KOH. The balanced equation is H2SO4 + 2KOH -> K2SO4 + 2H2O. Then, calculate the molarity of KOH: Molarity KOH = moles of KOH / volume of KOH solution (L)
The reaction between sulfuric acid (H2SO4) and potassium hydroxide (KOH) to produce potassium sulfate (K2SO4) and water (H2O) is classified as a neutralization reaction. In this type of reaction, an acid reacts with a base to form a salt and water. Here, H2SO4 acts as the acid and KOH as the base, resulting in the formation of the salt K2SO4 and water.
The balanced chemical equation between potassium hydroxide (KOH) and sulfuric acid (H2SO4) is: 2 KOH + H2SO4 -> K2SO4 + 2 H2O This equation shows that 2 moles of KOH react with 1 mole of H2SO4 to produce 1 mole of K2SO4 and 2 moles of water.
The chemical equation for the reaction between potassium hydroxide (KOH) and sulfuric acid (H2SO4) is: 2KOH + H2SO4 → K2SO4 + 2H2O.
The balanced neutralization reaction between sulfuric acid (H2SO4) and potassium hydroxide (KOH) in aqueous solution is: H2SO4 + 2KOH -> K2SO4 + 2H2O
The balanced chemical equation for the reaction is: 2 KOH + H2SO4 -> K2SO4 + 2 H2O From the equation, it can be seen that 2 moles of KOH react with 1 mole of H2SO4. Calculate the moles of H2SO4 (2.70 g / molar mass of H2SO4) and then use the mole ratio to find the moles of KOH required. Finally, convert the moles of KOH to mass (moles of KOH x molar mass of KOH) to get the required mass of KOH.
This chemical reaction represents a neutralization reaction, where an acid (H2SO4) reacts with a base (KOH) to form a salt (K2SO4) and water (H2O).
koh + h2so4-khso4 +h2o
The equation is:2 KOH + H2SO4 = K2SO4 + 2 H2O
H2SO4 is a strong acid commonly known as sulfuric acid. NaOH is a strong base commonly known as sodium hydroxide. When the two are mixed at a ratio of 1mol of H2SO4 to 2 mols of NaOH, a neutralization reaction occurs.