it made de copper chlorine
HCL and copper oxide = Copper chloride+water
When copper reacts with hydrochloric acid (Cu HCl), it forms copper chloride (CuCl2) and hydrogen gas (H2).
Copper does not react with hydrochloric acid (HCl) because it is less reactive than hydrogen. It forms a passive layer of copper chloride (CuCl2) on its surface, which protects the copper underneath from further reaction with the acid.
The chemical equation for the reaction between hydrochloric acid (HCl) and copper (II) sulfate (CuSO4) is: 2 HCl + CuSO4 -> CuCl2 + H2SO4
When hydrochloric acid is added to copper, a redox reaction occurs, resulting in the formation of copper chloride and hydrogen gas. The copper metal reacts with the hydrochloric acid to form copper (II) chloride solution and hydrogen gas is also produced. This reaction can be represented by the equation: 2 HCl + Cu -> CuCl2 + H2
HCL and copper oxide = Copper chloride+water
When copper reacts with hydrochloric acid (Cu HCl), it forms copper chloride (CuCl2) and hydrogen gas (H2).
It forms copper chloride and water.
Copper does not react with hydrochloric acid (HCl) because it is less reactive than hydrogen. It forms a passive layer of copper chloride (CuCl2) on its surface, which protects the copper underneath from further reaction with the acid.
When NH4Cl is heated, it decomposes into NH3 gas and HCl gas. The balanced chemical equation for this reaction is: NH4Cl(s) -> NH3(g) + HCl(g).
The chemical equation for the reaction between hydrochloric acid (HCl) and copper (II) sulfate (CuSO4) is: 2 HCl + CuSO4 -> CuCl2 + H2SO4
when the penny is reacted with HCl, there must be somesort of area where the copper on the outside of the penny is removed so that the HCl can react with the zinc inside because HCl does not react with copper. Once the HCl reacts with the Zn inside, it will dissapear and therefore become less dense then the ZnCl2 that is formed which causes the penny to float
When hydrochloric acid is added to copper, a redox reaction occurs, resulting in the formation of copper chloride and hydrogen gas. The copper metal reacts with the hydrochloric acid to form copper (II) chloride solution and hydrogen gas is also produced. This reaction can be represented by the equation: 2 HCl + Cu -> CuCl2 + H2
The reaction between copper (Cu) and hydrochloric acid (HCl) to form copper(II) chloride (CuCl2) and hydrogen gas (H2) is a single displacement reaction. This is because the copper replaces the hydrogen in HCl to form CuCl2.
In general, copper will not displace hydrogen from water or from acids, but in the case of hot, concentration H2SO4 a reaction will occur with copper. Why? Because hot, concentrated H2SO4 will act as an oxidizing agent to oxidize the copper to copper cation. HCl cannot do this.
When dilute hydrochloric acid is poured on a copper plate, no reaction occurs. Copper does not react with hydrochloric acid under normal conditions because it is less reactive than hydrogen.
No, copper cannot replace hydrogen in hydrochloric acid (HCl) under normal conditions. This is because copper is a less reactive metal than hydrogen, as determined by its position in the reactivity series of metals. Only metals that are more reactive than hydrogen can displace it from acids, such as zinc, magnesium, or iron. Copper, being less reactive, does not react with HCl to release hydrogen gas.