it emits different colours. Hope it helps.
When a sodium atom is heated and gives off a line spectrum, the outermost electron absorbs energy and gets excited to a higher energy level. As the electron returns to its original energy level, it releases this energy in the form of light, creating the characteristic line spectrum of sodium.
When an electron moves from a low energy state to a high energy state, it absorbs energy. This absorption of energy causes the electron to jump to a higher energy level or orbit further away from the nucleus. The electron is now in an excited state and can later release this energy in the form of light when it returns to a lower energy state.
The excited state of phosphorus occurs when an electron is promoted to a higher energy level within its electron configuration. This results in phosphorus having more energy than in its ground state, which can lead to the emission of light or other forms of energy when the electron returns to its original energy level.
When an electron in an atom returns from a higher energy state to a lower energy state, it emits a photon of light. This process is known as electron transition or de-excitation. The energy of the emitted photon is equal to the energy difference between the two electron energy states.
All transitions in which electrons move from a lower to a higher level require a gain of energy. example: 2nd to 3rd shell
The electron gains energy.
When a sodium atom is heated and gives off a line spectrum, the outermost electron absorbs energy and gets excited to a higher energy level. As the electron returns to its original energy level, it releases this energy in the form of light, creating the characteristic line spectrum of sodium.
The electron gains energy.
When an electron moves up an energy level, it absorbs energy in the form of a photon. This causes the electron to jump to a higher energy level and become excited. The electron will eventually return to a lower energy level by emitting a photon of light.
When an electron gets excited, energy is absorbed to move the electron to a higher energy level. This absorbed energy gets released when the electron returns to its original energy level, emitting electromagnetic radiation such as light.
When an electron moves from a low energy state to a high energy state, it absorbs energy. This absorption of energy causes the electron to jump to a higher energy level or orbit further away from the nucleus. The electron is now in an excited state and can later release this energy in the form of light when it returns to a lower energy state.
An electron may move to an electron shell farther out from the nucleus.
The excited state of phosphorus occurs when an electron is promoted to a higher energy level within its electron configuration. This results in phosphorus having more energy than in its ground state, which can lead to the emission of light or other forms of energy when the electron returns to its original energy level.
When an electron in an atom absorbs a specific "Quantum" of energy, it will jump to the next specific energy level in the atom. It'll then jump back down, and in so doing releasing light and giving off a signature light spectrum for an element.
It gains energy in a quantity amount or whatever it says
It absorbs light
When an electron in an atom returns from a higher energy state to a lower energy state, it emits a photon of light. This process is known as electron transition or de-excitation. The energy of the emitted photon is equal to the energy difference between the two electron energy states.