Sulphuric Acid
Aqueous Sulfuric Acid
OH- 2H+ -> 2H2O(I) ywwww :)
2H+ + SO42- + Ca2+ + 2I- CaSO4 + 2H+ + 2I
To find the molarity of the sulfuric acid (H2SO4), we first calculate the number of moles of NaOH used: 30.40 mL * 0.500 mol/L = 15.20 mmol NaOH. Since the mole ratio between NaOH and H2SO4 is 2:1, 15.20 mmol of NaOH would neutralize 7.60 mmol of H2SO4. Now we can find the molarity of H2SO4 using its volume: 7.60 mmol / 22.02 mL = 0.345 M H2SO4.
To write the complete ionic equation for the reaction between potassium hydroxide (KOH) and sulfuric acid (H₂SO₄), we first recognize that KOH dissociates into K⁺ and OH⁻ ions, while H₂SO₄ dissociates into 2 H⁺ and SO₄²⁻ ions. The complete ionic equation is: 2 K⁺(aq) + 2 OH⁻(aq) + 2 H⁺(aq) + SO₄²⁻(aq) → 2 H₂O(l) + K₂SO₄(aq). This shows the ions involved in the reaction and the products formed.