answersLogoWhite

0

Around 154 kJ per mol

User Avatar

Wiki User

12y ago

What else can I help you with?

Continue Learning about Chemistry

How is the stregth of a covalent bond related to its bond dissociation energy?

The strength of a covalent bond is directly related to its bond dissociation energy. The higher the bond dissociation energy, the stronger the covalent bond will be. This energy represents the amount of energy required to break the bond between two atoms.


How is the strength of a covalent bond related to its bond dissociation?

The strength of a covalent bond is related to its bond dissociation energy, which is the energy required to break the bond. Strong covalent bonds have high bond dissociation energies, meaning they require more energy to break. Conversely, weak covalent bonds have low bond dissociation energies, making them easier to break.


What is the difference between homolytic and heterolytic bond dissociation energy?

Homolytic bond dissociation energy is when a covalent bond breaks evenly, with each atom keeping one electron. Heterolytic bond dissociation energy is when a covalent bond breaks unevenly, with one atom keeping both electrons.


A higher bond dissociation energy means the covalent bond is?

It means bond is very stable or strong.


How does bond dissociation energy relate to the number of shared electron pairs?

Bond dissociation energy is the energy required to break a covalent bond. The more shared electron pairs in a bond, the stronger the bond and the higher the bond dissociation energy required to break it. This is because a greater number of shared electron pairs results in stronger attraction between the bonded atoms.

Related Questions

How is the stregth of a covalent bond related to its bond dissociation energy?

The strength of a covalent bond is directly related to its bond dissociation energy. The higher the bond dissociation energy, the stronger the covalent bond will be. This energy represents the amount of energy required to break the bond between two atoms.


How is the strength of a covalent bond related to its bond dissociation?

The strength of a covalent bond is related to its bond dissociation energy, which is the energy required to break the bond. Strong covalent bonds have high bond dissociation energies, meaning they require more energy to break. Conversely, weak covalent bonds have low bond dissociation energies, making them easier to break.


What is the difference between homolytic and heterolytic bond dissociation energy?

Homolytic bond dissociation energy is when a covalent bond breaks evenly, with each atom keeping one electron. Heterolytic bond dissociation energy is when a covalent bond breaks unevenly, with one atom keeping both electrons.


How is the strength of a covalent bond related to it's bond to its bond dissociation energy?

Greater the bond strength, greater is the bond dissociation energy. (So they are proportional to each other).


A higher bond dissociation energy means the covalent bond is?

It means bond is very stable or strong.


How does bond dissociation energy relate to the number of shared electron pairs?

Bond dissociation energy is the energy required to break a covalent bond. The more shared electron pairs in a bond, the stronger the bond and the higher the bond dissociation energy required to break it. This is because a greater number of shared electron pairs results in stronger attraction between the bonded atoms.


What is the relationship between the magnitude of a molecule's bond dissociation energy and its expected chemical reactivity?

remember dissociation energy is the energy required to break a bond between to covalently bonded atoms. dissociation energy corresponds to the strength of a covalent bond. carbon compounds however have very high dissociation energy meaning it would be harder to break the bond between them than it is for a bond of lower dissociation energy. if the bonds cannot be broken then they cannot be used to form covalent bonds and thus are unreactive. they are unreactive partly because their dissociation energy is high. in other words for the slow ones jk lol: the higher the dissociation energy the less reactive. ex carbon compounds like C-C, C-H are unreactive


What does a high dissociation energy say about the strength of a particular covalent bond?

A high dissociation energy indicates a strong covalent bond that requires a significant amount of energy to break. This suggests that the atoms involved in the bond are strongly held together and have a lower tendency to dissociate into individual atoms.


What does the energy require to completely remove the covalent bond between two atoms?

The energy required to completely break a covalent bond between two atoms is known as the bond dissociation energy or bond energy. It varies depending on the specific atoms involved and the type of bond, but it is typically in the range of 50-1000 kJ/mol. This energy is needed to overcome the attractive forces holding the atoms together in the bond.


How do you calculate the bond dissociation energy of a chemical bond?

The bond dissociation energy of a chemical bond is calculated by measuring the energy required to break the bond completely. This energy is typically expressed in kilojoules per mole (kJ/mol) and can be determined experimentally using techniques such as spectroscopy or calorimetry. The higher the bond dissociation energy, the stronger the bond.


How do you calculate the dissociation energy of a chemical bond?

The dissociation energy of a chemical bond is calculated by measuring the energy required to break the bond and separate the atoms involved. This energy is typically determined through experimental methods such as spectroscopy or calorimetry. The higher the dissociation energy, the stronger the bond between the atoms.


When is a covalent bond often formed?

A covalent bond is typical for compounds between nonmetals.