The electron configuration for the Co2 ion is Ar 3d7.
The electron configuration of a V3 ion is Ar 3d2.
The electron configuration of the Co2 ion is Ar 3d7.
Rhodium (Rh) forms a 3 plus ion that has the electron configuration Kr4d6. Rhodium has oxidation states of 2,3 and 4, so it can loan out 2, 3 or 4 electrons depending on the circumstances of a chemical reaction.
The electron configuration of an Sc2 ion is Ar 3d1 4s0.
There are four electrons in a Beryllium atom. Hence the mono positive ion has only three electrons. Therefore the electron configuration is 1s2 2s1.
The electron configuration for a magnesium cation Mg2 plus is 1s2.2s2.2p6.
The electron configuration for the Co2 ion is Ar 3d7.
The electron configuration of a V3 ion is Ar 3d2.
The electron configuration of the Co2 ion is Ar 3d7.
The electron configuration of copper(II) is [Ar] 3d9 . Copper is [Ar] 3d10 4s1
Rhodium (Rh) forms a 3 plus ion that has the electron configuration Kr4d6. Rhodium has oxidation states of 2,3 and 4, so it can loan out 2, 3 or 4 electrons depending on the circumstances of a chemical reaction.
The electron configuration of an Sc2 ion is Ar 3d1 4s0.
The electron configuration of boron is 1s2 2s2 2p1. When boron becomes an ion, it typically loses its outer electron to achieve a stable electron configuration. Therefore, the electron configuration of a boron ion is typically 1s2 2s2.
The electron configuration of 1s2 2s2 2p6 corresponds to a neutral atom of Neon (atomic number 10). A 3+ ion would have lost all its valence electrons, leaving behind a stable 1s2 2s2 2p6 configuration, giving it the electron configuration of a Neon ion.
The electron configuration of an Fe ion is 1s2 2s2 2p6 3s2 3p6 3d6.
The ground-state electron configuration for the V3 ion is Ar 3d2.