The reaction between an aldehyde and acidified potassium permanganate (KMnO4) typically results in oxidation of the aldehyde to a carboxylic acid. The general equation for this reaction is RCHO + KMnO4 + H+ → RCOOH + MnO2 + K+.
Aldehyde + Acidified potassium permanganate (KMnO4) undergoes oxidation, resulting in the formation of a carboxylic acid. The balanced chemical equation for the reaction is: Aldehyde + 2[KMnO4] + 3[H2SO4] → Carboxylic acid + 2[MnSO4] + K2SO4 + 3[H2O].
The reaction between acidified potassium permanganate and toluene results in the oxidation of toluene to benzoic acid. The balanced chemical equation for this reaction is: C7H8 + 2KMnO4 + 8H2SO4 → 2MnSO4 + K2SO4 + 7H2O + 7H2O + C6H5CO2H
The chemical equation for this reaction is: 5Fe^2+ + MnO4^- + 8H^+ -> 5Fe^3+ + Mn^2+ + 4H2O In this reaction, the purple color of potassium permanganate (MnO4^-) is removed as it is reduced to colorless manganese ions (Mn^2+) by the ferrous ions (Fe^2+) in the acidified solution.
The equation for the reaction between oleic acid and potassium permanganate is not straightforward because it depends on the conditions and concentrations. Generally, potassium permanganate can oxidize oleic acid to form carbon dioxide and water along with other byproducts. The balanced equation will depend on the stoichiometry of the reaction and the specific conditions.
The reaction between glucose and acidified potassium dichromate is the oxidation of glucose to form gluconic acid. The chemical equation for this reaction is: C6H12O6 + H2Cr2O7 + H+ -> C6H11O7COOH + Cr2(SO4)3 + H2O
Aldehyde + Acidified potassium permanganate (KMnO4) undergoes oxidation, resulting in the formation of a carboxylic acid. The balanced chemical equation for the reaction is: Aldehyde + 2[KMnO4] + 3[H2SO4] → Carboxylic acid + 2[MnSO4] + K2SO4 + 3[H2O].
the equation for this are? aldehyde + acidified potassium permanganate RCHO + 2KMnO4 + H2SO4 → RCOOH + K2SO4 + 2MnO2 ↓+ H20 aldehyde + Tollen's reagent RCHO + 2AgNO3 + 2NH4OH → RCOOH + 2Ag↓ + 2NH4NO3 +H2O aldehyde+ Fehling's reagent RCHO + 2CuSO4 + 4NaOH →RCOOH + Cu2O↓+ 2Na2SO4 + 2H2O THAT's ALL I KNOW aldehyde + Sodium Hydrogen Sulfite
The reaction between acidified potassium permanganate and toluene results in the oxidation of toluene to benzoic acid. The balanced chemical equation for this reaction is: C7H8 + 2KMnO4 + 8H2SO4 → 2MnSO4 + K2SO4 + 7H2O + 7H2O + C6H5CO2H
The chemical equation for this reaction is: 5Fe^2+ + MnO4^- + 8H^+ -> 5Fe^3+ + Mn^2+ + 4H2O In this reaction, the purple color of potassium permanganate (MnO4^-) is removed as it is reduced to colorless manganese ions (Mn^2+) by the ferrous ions (Fe^2+) in the acidified solution.
The equation for the reaction between oleic acid and potassium permanganate is not straightforward because it depends on the conditions and concentrations. Generally, potassium permanganate can oxidize oleic acid to form carbon dioxide and water along with other byproducts. The balanced equation will depend on the stoichiometry of the reaction and the specific conditions.
The chemical equation for the reaction between methanoic acid (HCOOH) and acidified potassium permanganate (KMnO4) is: 2KMnO4 + 5HCOOH + 3H2SO4 → 2MnSO4 + K2SO4 + 5CO2 + 8H2O This reaction is a redox reaction where potassium permanganate is reduced from +7 to +2 oxidation state and methanoic acid is oxidized to carbon dioxide.
lol huh
acetone does not react with potassium dichromate
The reaction between glucose and acidified potassium dichromate is the oxidation of glucose to form gluconic acid. The chemical equation for this reaction is: C6H12O6 + H2Cr2O7 + H+ -> C6H11O7COOH + Cr2(SO4)3 + H2O
16HCl + 2KMnO4 --> 2KCl + 2MnCl2 + 5Cl2 + 8H2O
KMnO4 + NaNO2 -> KNO2 + NaMnO4
The reaction equation between heptane and potassium permanganate is: C7H16 + 19KMnO4 + 40H2SO4 → 7MnSO4 + 19K2SO4 + 16H2O + 7CO2. This reaction is an oxidation reaction where heptane is converted to carbon dioxide, water, and other byproducts.