-2.37 - 0.34
-2.37 - 0.34
The standard cell potential for the non-spontaneous reaction between silver and copper ions (Ag+ and Cu2+) is determined by subtracting the reduction potential of Ag+ from that of Cu2+. The cell potential would be negative as the reaction is non-spontaneous, indicating that an external voltage larger than the calculated value would be needed to drive the reaction in the reverse direction.
0.34 - (-2.37) you're welcome.
if the external circuit is replaced by a source of electricity that opposes the voltaic cell, the electrode reactions can be reversed.Now,the external source pushes the electrons in the opposite direction and supplies energy or work to the cell so that the reverse non-spontaneous reaction occurs.
In an electrolytic cell, electrical energy is transformed into chemical energy. This occurs when an external voltage is applied to drive a non-spontaneous redox reaction to produce a desired chemical product.
The reaction is spontaneous.
-2.37 - 0.34
The standard cell potential for the non-spontaneous reaction between silver and copper ions (Ag+ and Cu2+) is determined by subtracting the reduction potential of Ag+ from that of Cu2+. The cell potential would be negative as the reaction is non-spontaneous, indicating that an external voltage larger than the calculated value would be needed to drive the reaction in the reverse direction.
A galvanic cell can become an electrolytic cell by applying an external voltage that is of opposite polarity to the cell's spontaneous voltage. This external voltage can overcome the natural tendency of the cell to generate electricity and drive a non-spontaneous chemical reaction in the reverse direction, converting it into an electrolytic cell.
The overall voltage for the redox reaction involving Ag and Cu is determined by subtracting the reduction potential of the anode from the reduction potential of the cathode. Given the reduction potentials of Ag and Cu as 0.80 V and 0.34 V respectively, the overall voltage is 0.46 V, calculated as (0.34 V) - (0.80 V).
0.80-0.34
The overall voltage for the nonspontaneous redox reaction involving magnesium (Mg) and copper (Cu) can be determined using standard reduction potentials. The reduction potential for Cu²⁺ to Cu is +0.34 V, while the oxidation potential for Mg to Mg²⁺ is -2.37 V. The overall cell potential (E°cell) is calculated by adding the reduction potential of the cathode (Cu) to the oxidation potential of the anode (Mg), resulting in E°cell = 0.34 V - 2.37 V = -2.03 V. Since the value is negative, the reaction is nonspontaneous under standard conditions.
0.34 - (-2.37) you're welcome.
An electrolytic cell
Electrolytic cell
if the external circuit is replaced by a source of electricity that opposes the voltaic cell, the electrode reactions can be reversed.Now,the external source pushes the electrons in the opposite direction and supplies energy or work to the cell so that the reverse non-spontaneous reaction occurs.
In the nonspontaneous redox reaction involving magnesium (Mg) and copper ions (Cu²⁺), magnesium acts as the reducing agent, while copper ions are reduced to copper metal. The standard reduction potential for Cu²⁺/Cu is +0.34 V, and for Mg²⁺/Mg, it is -2.37 V. The overall cell potential (E°) can be calculated as E° = E°(reduction) - E°(oxidation), which yields E° = 0.34 V - (-2.37 V) = 2.71 V. Since the reaction is nonspontaneous, the cell potential would be negative under standard conditions.