+3
In AlOH^1-, oxygen typically has an oxidation number of -2. Since the overall charge of AlOH^1- is -1, the oxidation number of Al can be calculated as follows: (oxidation number of Al) + (oxidation number of O) + (oxidation number of H) = -1. Solving for Al gives an oxidation number of +3.
The oxidation number of Al in Al2Br6 is +3. Each bromine atom has an oxidation number of -1, and since the compound is neutral, the sum of the oxidation numbers must equal zero. Hence, each Al atom must have an oxidation number of +3 to balance the -6 from the bromine atoms.
The oxidation number of aluminum (Al) in Al2S3 is +3, while the oxidation number of sulfur (S) is -2. Each aluminum atom has an oxidation number of +3, and each sulfur atom has an oxidation number of -2 in order to balance the charge in the compound.
In the compound Al₂O₃, aluminum has an oxidation number of +3, and oxygen has an oxidation number of -2. This gives a total charge of zero for the compound, as it should be electrically neutral.
The oxidation number of aluminum (Al) is +3, the oxidation number of chromium (Cr) is +3, and the oxidation number of oxygen (O) is -2. Therefore, in Al2Cr6O21, the total oxidation number would be +6 from aluminum, +18 from chromium, and -42 from oxygen, resulting in a net oxidation number of -18 for the compound.
The oxidation number of Na in NaAlH4 is +1. This is because in ionic compounds, such as NaAlH4, the metal ion (Na) has a fixed positive oxidation state based on the charge it would have if it was an ion.
In AlOH^1-, oxygen typically has an oxidation number of -2. Since the overall charge of AlOH^1- is -1, the oxidation number of Al can be calculated as follows: (oxidation number of Al) + (oxidation number of O) + (oxidation number of H) = -1. Solving for Al gives an oxidation number of +3.
The oxidation number of Al is +3.
The oxidation number of Al in Al2Br6 is +3. Each bromine atom has an oxidation number of -1, and since the compound is neutral, the sum of the oxidation numbers must equal zero. Hence, each Al atom must have an oxidation number of +3 to balance the -6 from the bromine atoms.
The oxidation number of aluminum (Al) in Al2S3 is +3, while the oxidation number of sulfur (S) is -2. Each aluminum atom has an oxidation number of +3, and each sulfur atom has an oxidation number of -2 in order to balance the charge in the compound.
In the compound Al₂O₃, aluminum has an oxidation number of +3, and oxygen has an oxidation number of -2. This gives a total charge of zero for the compound, as it should be electrically neutral.
The oxidation number of aluminum (Al) is +3, the oxidation number of chromium (Cr) is +3, and the oxidation number of oxygen (O) is -2. Therefore, in Al2Cr6O21, the total oxidation number would be +6 from aluminum, +18 from chromium, and -42 from oxygen, resulting in a net oxidation number of -18 for the compound.
+3 for Al and -2 for O is the oxidation number for Al2O3.
The oxidation number of Al in AlF3 is +3 because fluorine has an oxidation number of -1 and there are three fluorine atoms in AlF3. This results in a neutral compound with an overall charge of 0.
The oxidation number of carbon (C) in Al4C3 is -4. This is because aluminum (Al) has an oxidation number of +3 and there are 4 aluminum atoms for a total oxidation number of +12. This must be balanced by the oxidation numbers of the carbon atoms, which must be -4 in order for the compound to be neutral.
In aluminum oxide (Al₂O₃), the oxidation number of aluminum (Al) is +3, while the oxidation number of oxygen (O) is -2. Since there are two aluminum atoms contributing a total of +6 and three oxygen atoms contributing a total of -6, the compound is electrically neutral, confirming these oxidation states. Thus, the oxidation numbers are +3 for Al and -2 for O.
The oxidation number for Al in AlF3 is +3. This is because fluoride (F) has an oxidation number of -1, and the overall compound is neutral, so the oxidation number of Al must be +3 to balance the charges.