The metal with the lowest thermal capacity.
To find the final temperature after mixing the two amounts of water, you can use the principle of conservation of energy. The specific heat capacity of water is 4.18 J/g°C. Calculate the total energy gained or lost by each portion of water and set them equal to each other to solve for the final temperature.
To find the final temperature, we can use the formula: q = m x c x ΔT, where q is the heat energy, m is the mass of water, c is the specific heat capacity of water, and ΔT is the temperature change. By rearranging the formula and substituting the values, we can find the final temperature to be approximately 39.8°C.
When hot metal is added into the water then the metal looses its energy into the water and this heat is gained by the water, so the temperature gets increases when hot metal added into it i.e final temperature is greater than initial temperature of water.
To find the final temperature, you need to use the formula ( q = mc\Delta T ), where q is the heat energy, m is the mass of the substance, c is the specific heat capacity, and ΔT is the change in temperature. First, calculate the mass of water using the density of water ( \rho = 1g/cm^3 = 1kg/L ) and the volume provided. Then, use the specific heat capacity of water (4.18 J/g°C) to find the temperature change and thus the final temperature.
The final temperature can be calculated using the principle of conservation of energy. The heat gained by the cooler water is equal to the heat lost by the warmer water. The final temperature is the temperature at which this heat exchange occurs, which can be calculated using the formula for heat transfer.
To find the final temperature after mixing the two amounts of water, you can use the principle of conservation of energy. The specific heat capacity of water is 4.18 J/g°C. Calculate the total energy gained or lost by each portion of water and set them equal to each other to solve for the final temperature.
To find the final temperature, we can use the formula: q = m x c x ΔT, where q is the heat energy, m is the mass of water, c is the specific heat capacity of water, and ΔT is the temperature change. By rearranging the formula and substituting the values, we can find the final temperature to be approximately 39.8°C.
1600
To calculate the final temperature of the liquid after adding the energy, we would need more information such as the specific heat capacity of the liquid. The change in temperature can be calculated using the formula Q = mcΔT, where Q is the energy added, m is the mass of the liquid, c is the specific heat capacity, and ΔT is the change in temperature. Once these values are known, we can determine the final temperature of the liquid.
When hot metal is added into the water then the metal looses its energy into the water and this heat is gained by the water, so the temperature gets increases when hot metal added into it i.e final temperature is greater than initial temperature of water.
As an object is heated, the rate of increase in temperature is proportional to the rate of heat added. The proportionality is called the heat capacity. Because the heat capacity is actually a function of temperature in real materials, the total amount of energy added will be equal to the integral of the heat capacity function over the interval from the initial temperature to the final temperature. If you just assume an average heat capacity over the temperature range, then the rise in temperature will be exactly proportional to the amount of heat added.
As an object is heated, the rate of increase in temperature is proportional to the rate of heat added. The proportionality is called the heat capacity. Because the heat capacity is actually a function of temperature in real materials, the total amount of energy added will be equal to the integral of the heat capacity function over the interval from the initial temperature to the final temperature. If you just assume an average heat capacity over the temperature range, then the rise in temperature will be exactly proportional to the amount of heat added.
if 2.5kg of hot water at 100c is added to 10kg of cold water at 28c and stirred well. what is the final temperature of mixture? (neglect the heat absorbed by container and the heat lost by the surroundings.)
The composition of objects can affect the final temperature through their specific heat capacities, which determine how much heat energy is needed to raise their temperature. Objects with higher specific heat capacities will require more energy to increase their temperature compared to objects with lower specific heat capacities. Additionally, the mass of the objects will also play a role in determining the final temperature, as objects with higher masses will require more heat energy to increase their temperature.
To find the final temperature of the water, we can use the principle of conservation of energy, which states that the total energy of the system remains constant. By using the formula: (mass1 * specific heat1 * change in temperature1) = (mass2 * specific heat2 * change in temperature2), we can calculate the final temperature to be approximately 13.3 degrees Celsius.
To find the final temperature, you need to use the formula ( q = mc\Delta T ), where q is the heat energy, m is the mass of the substance, c is the specific heat capacity, and ΔT is the change in temperature. First, calculate the mass of water using the density of water ( \rho = 1g/cm^3 = 1kg/L ) and the volume provided. Then, use the specific heat capacity of water (4.18 J/g°C) to find the temperature change and thus the final temperature.
To find the final temperature, you can use the equation: q = mcΔT, where q is the heat added, m is the mass, c is the specific heat capacity of aluminum, and ΔT is the change in temperature. Rearrange the equation to solve for final temperature, T. Substitute the values and solve for T.