Magnesium Chloride.
MgCO3 +2HCl -----> MgCl2 + CO2 + H2O
When dilute hydrochloric acid is added to magnesium, a chemical reaction occurs where hydrogen gas is produced and magnesium chloride is formed as a product. The reaction can be represented by the equation: Mg + 2HCl -> MgCl2 + H2.
When more magnesium carbonate is added to hydrochloric acid and the fizzing stops, it could mean that all the acid has reacted with the magnesium carbonate to form magnesium chloride, carbon dioxide, and water. This reaction consumes the acid, causing the fizzing to cease.
When magnesium carbonate is added to hydrochloric acid, a chemical reaction occurs that produces magnesium chloride, water, and carbon dioxide gas. The fizzing you see is the carbon dioxide gas being released. Once all the carbon dioxide has been produced and released, the fizzing stops.
When dilute hydrochloric acid is added to a solution of potassium carbonate, a double displacement reaction occurs. The products of this reaction are potassium chloride (KCl), carbon dioxide (CO2), and water (H2O). The balanced chemical equation for this reaction is: 2HCl + K2CO3 -> 2KCl + CO2 + H2O.
If the limestone rock fizzes when dilute acid is added, it indicates the presence of calcium carbonate in the rock. When calcium carbonate reacts with acid, it produces carbon dioxide gas, which causes the fizzing.
They react to form H2CO3 and MgCl2
When dilute hydrochloric acid is added to magnesium, a chemical reaction occurs where hydrogen gas is produced and magnesium chloride is formed as a product. The reaction can be represented by the equation: Mg + 2HCl -> MgCl2 + H2.
MgSO4+ H2O + CO2
You think probable to calcium carbonate.
When more magnesium carbonate is added to hydrochloric acid and the fizzing stops, it could mean that all the acid has reacted with the magnesium carbonate to form magnesium chloride, carbon dioxide, and water. This reaction consumes the acid, causing the fizzing to cease.
When magnesium carbonate is added to hydrochloric acid, a chemical reaction occurs that produces magnesium chloride, water, and carbon dioxide gas. The fizzing you see is the carbon dioxide gas being released. Once all the carbon dioxide has been produced and released, the fizzing stops.
When dilute hydrochloric acid is added to a solution of potassium carbonate, a double displacement reaction occurs. The products of this reaction are potassium chloride (KCl), carbon dioxide (CO2), and water (H2O). The balanced chemical equation for this reaction is: 2HCl + K2CO3 -> 2KCl + CO2 + H2O.
If the limestone rock fizzes when dilute acid is added, it indicates the presence of calcium carbonate in the rock. When calcium carbonate reacts with acid, it produces carbon dioxide gas, which causes the fizzing.
When marble (calcium carbonate, CaCO3) is added to dilute hydrochloric acid (HCl), carbon dioxide gas (CO2) is evolved due to the reaction between the acid and the carbonate compound. This gas can be observed as bubbles coming out of the solution.
The fizzing observed is indicative of a chemical reaction occurring between magnesium and hydrochloric acid. Specifically, the magnesium is reacting with the hydrochloric acid to produce magnesium chloride and hydrogen gas. The release of hydrogen gas is responsible for the bubbling or fizzing seen during the reaction.
When dilute hydrochloric acid is added to sodium carbonate solution, it produces bubbles of carbon dioxide gas. This can be tested by passing the gas through limewater, which will turn milky if carbon dioxide is present. Additionally, the gas can be identified using a flame test, where carbon dioxide does not support combustion.
When magnesium is added to hydrochloric acid, a chemical reaction takes place, resulting in the formation of magnesium chloride and hydrogen gas. The color of the hydrochloric acid does not change significantly during this reaction.