The pressure increases.
If you decrease the size of a container holding a gas, the pressure of the gas increases. This is because the gas molecules have less space to move, leading to more frequent collisions with the container walls, resulting in an increase in pressure.
decrease
If the volume of a container of air is reduced, the pressure of the air inside the container will increase. This is because the volume and pressure of a gas are inversely proportional according to Boyle's Law. The particles inside the container will collide more frequently with the walls, leading to an increase in pressure.
The volume stays the same if it is in a container. If it is not then the volume will increase.PV = nRTPressure times Volume = number of moles times Gas constant times temperatureThus if you raise temperature, pressure and/or volume must increase.
If the volume of a container of gas is reduced, the pressure inside the container will increase. This is because reducing the volume decreases the amount of space the gas molecules have to move around, leading to them colliding more frequently with the walls of the container, thus increasing the pressure.
A decrease in temperature or a decrease in the number of gas molecules in the container will cause a decrease in gas pressure. Alternatively, if some of the gas molecules escape from the container, the pressure will also decrease.
If you decrease the size of a container holding a gas, the pressure of the gas increases. This is because the gas molecules have less space to move, leading to more frequent collisions with the container walls, resulting in an increase in pressure.
decrease
If the volume of a container of air is reduced, the pressure of the air inside the container will increase. This is because the volume and pressure of a gas are inversely proportional according to Boyle's Law. The particles inside the container will collide more frequently with the walls, leading to an increase in pressure.
On the molecular level pressure is caused by individual gas molecules interacting with the surfaces of a container. Pressure is defined as force per unit area, so in the most basic level pressure can increase with an increase in force applied to the container or a decrease in area the molecules are interacting with. The decrease in area can be from a smaller container, or an increase in force can be from an increase in the velocity of the molecules. This increase in velocity is usually due to an increase in energy (typically heat).
Pressure is given by the equation P = F/A, where F is force and A is the area it's applied over. For a solid or liquid, you can increase pressure just by pushing harder on it. For a gas, pressure is approximately given by P = (n*R*T)/V, where n is how much gas you have in moles, T is the temperature in kelvin, V is the volume of the container, and R is a constant. So to increase pressure, either increase the amount of gas, increase the temperature, or decrease the volume of the container.
boyle's law holds good in this case and the gas experiences decrease in volume....provided the gas is not in a container with fixed dimensions! its volume will decrease
Assuming the volume is kept constant, the pressure will also decrease in this case.
"For a fixed mass of ideal gas at fixed temperature, the product of pressure and volume is a constant." This means that if you have a container with an ideal gas in it, and the container is closed so that no gas can escape or get int (i.e. the mass of the gas contained is constant), when you raise the volume of the container by some ratio, the pressure will be reduced by the same ratio. So if you triple the volume, the pressure will be reduced to a third of its original value. And if you quadruple the pressure, the volume will go down by a factor of 4.
The volume stays the same if it is in a container. If it is not then the volume will increase.PV = nRTPressure times Volume = number of moles times Gas constant times temperatureThus if you raise temperature, pressure and/or volume must increase.
At isobaric (pressure) expansion (volume increase) the temperature will increase because V is proportional to T for the same amount of gas (closed container) at constant pressure.
If the temperature remains constant and the volume of the container holding the gas decreases, the pressure of the gas will increase. This is because as the volume decreases, the gas particles have less space to move around, leading to more frequent collisions with the container walls, thus increasing the pressure.