answersLogoWhite

0


Best Answer

halogens

User Avatar

Wiki User

12y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: Which elements have electron configuration that end in ns2 np5?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Chemistry

Mention the General electronic configuration of nitrogen group elements?

these elements have 5 electron in the valence shells and have configuration of ns np5


What is the general valence shell configuration for the elements in group 7A?

Valence electron configuration in group 7A (halogens): ns2, np5 in which n=2, 3, 4, 5, ... etc. Starting with fluorine, F, electron configuration: (1s2), 2s2 2p5 (non valence electrons in () brackets)


Which family of elements is characterized by an ns2 np5 valence configuration?

Elements that have configuration of ns2np5 are members of the Halogen group(Group VIIA). They are, Fluorine, Bromine, Iodine and Astatine.


What element electron configurations would represent a halogen?

The halogens are is group VII (17), and thus they all have 7 valence electrons. These will be located in different energy levels for the different halogens, but since they are all also p-block elements, they will all have ns^2 np^5 electron configurations, where n is the period number. Examples: Cl will be [Ne] 3s^2 3p^5 and Br will be [Ar] [Ar] 4s2 3d10 4p5 (note the inclusion of the d-block electrons for Br).


How would you relate the number of valence electron to their group number in the periodic table?

For main group chemistry, the trend followed would be as such, where "n" is the valence orbital: ns1 = group 1 ns2 = group 2 ns2 np1 = group 3 (also called group 13) ns2 np2 = group 4 (also called group 14) ns2 np3 = group 5 (also called group 15) ns2 np4 = group 6 (also called group 16) ns2 np5 = group 7 (also called group 17) ns2 np6 = group 8 (also called group 18) This rule can only be successfully applied to main group chemistry, the D and F blocks (transition metals, lanthanides and actinides) do not follow this.

Related questions

Mention the General electronic configuration of nitrogen group elements?

these elements have 5 electron in the valence shells and have configuration of ns np5


What is the general valence shell configuration for the elements in group 7A?

Valence electron configuration in group 7A (halogens): ns2, np5 in which n=2, 3, 4, 5, ... etc. Starting with fluorine, F, electron configuration: (1s2), 2s2 2p5 (non valence electrons in () brackets)


Which family of elements is characterized by an ns2 np5 valence configuration?

Elements that have configuration of ns2np5 are members of the Halogen group(Group VIIA). They are, Fluorine, Bromine, Iodine and Astatine.


What element electron configurations would represent a halogen?

The halogens are is group VII (17), and thus they all have 7 valence electrons. These will be located in different energy levels for the different halogens, but since they are all also p-block elements, they will all have ns^2 np^5 electron configurations, where n is the period number. Examples: Cl will be [Ne] 3s^2 3p^5 and Br will be [Ar] [Ar] 4s2 3d10 4p5 (note the inclusion of the d-block electrons for Br).


In groups 13 through 18 valence electrons may be in which sublevels?

Gp 13=ns2 np1 Gp 14=ns2 np2 Gp 15=ns2 np3 Gp 16=ns2 np4 Gp 17=ns2 np5 Gp 18=ns2 np6


Do any of the halogens have their valance electrons in orbitalsof the same level?

In general, the electronic structure of the valence electrons of halogens is given by: ns2, np5 where n is the period in which the halogen is found. Since the valence electrons are found in both s and p orbitals which have slightly different energies, the valence electrons of halogens are not in orbitals of the same energy level.


How would you relate the number of valence electron to their group number in the periodic table?

For main group chemistry, the trend followed would be as such, where "n" is the valence orbital: ns1 = group 1 ns2 = group 2 ns2 np1 = group 3 (also called group 13) ns2 np2 = group 4 (also called group 14) ns2 np3 = group 5 (also called group 15) ns2 np4 = group 6 (also called group 16) ns2 np5 = group 7 (also called group 17) ns2 np6 = group 8 (also called group 18) This rule can only be successfully applied to main group chemistry, the D and F blocks (transition metals, lanthanides and actinides) do not follow this.