answersLogoWhite

0

deposition, ∆H is +

hope that helped!

User Avatar

Wiki User

13y ago

What else can I help you with?

Continue Learning about Chemistry

Is the enthalpy change (H) independent of temperature?

No, the enthalpy change (H) is not independent of temperature. It can vary with temperature changes.


How can an unknown deltaH reaction be determined using Hess's law?

By manipulating known reactions with known enthalpy changes to create a series of intermediate reactions that eventually add up to the desired reaction whose enthalpy change is unknown. By applying Hess's law, the sum of the enthalpy changes for the intermediate reactions will equal the enthalpy change of the desired reaction, allowing you to determine its enthalpy change.


How do you calculate the enthalpy change of a solution (H solution)?

To calculate the enthalpy change of a solution (H solution), you can use the formula: H solution H solute H solvent H mixing Where: H solute is the enthalpy change when the solute dissolves in the solvent H solvent is the enthalpy change when the solvent changes state (if applicable) H mixing is the enthalpy change when the solute and solvent mix By adding these three components together, you can determine the overall enthalpy change of the solution.


If you need to reverse the following reaction in order for it to be an intermediate reaction in a Hess's law problem what would be the final value for the enthalpy of reaction you use for this in?

The final value for the enthalpy of the reverse reaction used in a Hess's law problem would simply be the negative of the original value of the enthalpy of the forward reaction. This is because reversing a reaction changes the sign of the enthalpy change.


How do you calculate the enthalpy change of a reaction?

To calculate the enthalpy change of a reaction, subtract the total enthalpy of the reactants from the total enthalpy of the products. This difference represents the enthalpy change of the reaction.

Related Questions

Is the enthalpy change (H) independent of temperature?

No, the enthalpy change (H) is not independent of temperature. It can vary with temperature changes.


If you need to reverse the following reaction in order for it to be an intermediate reaction in a Hess's law problem what would be the final value for the enthalpy of reaction you use for this interme?

To reverse a reaction in a Hess's law problem, you need to change the sign of the enthalpy change associated with that reaction. If the original reaction has an enthalpy of reaction ( \Delta H ), the final value for the enthalpy of the reversed reaction would be ( -\Delta H ). This allows you to correctly account for the energy change in the overall pathway when combining reactions.


How can an unknown deltaH reaction be determined using Hess's law?

By manipulating known reactions with known enthalpy changes to create a series of intermediate reactions that eventually add up to the desired reaction whose enthalpy change is unknown. By applying Hess's law, the sum of the enthalpy changes for the intermediate reactions will equal the enthalpy change of the desired reaction, allowing you to determine its enthalpy change.


How do you calculate the enthalpy change of a solution (H solution)?

To calculate the enthalpy change of a solution (H solution), you can use the formula: H solution H solute H solvent H mixing Where: H solute is the enthalpy change when the solute dissolves in the solvent H solvent is the enthalpy change when the solvent changes state (if applicable) H mixing is the enthalpy change when the solute and solvent mix By adding these three components together, you can determine the overall enthalpy change of the solution.


If you need to reverse the following reaction in order for it to be an intermediate reaction in a Hess's law problem what would be the final value for the enthalpy of reaction you use for this in?

The final value for the enthalpy of the reverse reaction used in a Hess's law problem would simply be the negative of the original value of the enthalpy of the forward reaction. This is because reversing a reaction changes the sign of the enthalpy change.


How do you calculate the enthalpy change of a reaction?

To calculate the enthalpy change of a reaction, subtract the total enthalpy of the reactants from the total enthalpy of the products. This difference represents the enthalpy change of the reaction.


How is Hess's law applied in calculating enthalpy?

All the reactions in a path are added together.


How does the enthalpy temperature dependence affect the overall energy changes in a chemical reaction?

The enthalpy temperature dependence influences the overall energy changes in a chemical reaction by affecting the heat absorbed or released during the reaction. As temperature increases, the enthalpy change also changes, which can impact the reaction's energy balance.


If you need to reverse the following reaction and multiply it by 2 in order for it to be an intermediate reaction in a Hess's law problem what would be the final value for the enthalpy of reaction you?

If you need to reverse a reaction and multiply it by 2 in Hess's law, the enthalpy change of the reaction will also change sign and double in magnitude. This is because reversing a reaction changes the sign of the enthalpy change. Multiplying the reaction by a factor also multiplies the enthalpy change by that factor. Therefore, the final value for the enthalpy of the reaction will be twice the original magnitude but with the opposite sign.


How is Hess's law used to measure enthalpy of a desired reaction?

... Intermediate equations with known enthalpies are added together.


What is the Hess's law?

C - The enthalpy of reaction does not depend on the steps taken in the reaction. APEX --WXM--


What is the enthalpy change for the reverse reaction?

The enthalpy change for the reverse reaction is equal in magnitude but opposite in sign to the enthalpy change for the forward reaction.