Ionic compounds do not exist in independent molecular form because the ions in the compound are held together by strong electrostatic forces of attraction known as ionic bonds. These bonds result from the transfer of electrons from one atom to another, creating positive and negative ions that are attracted to each other. This strong attraction prevents the ions from existing independently as separate molecules.
Ionic compounds such as sodium chloride (NaCl) and metallic compounds like steel do not exist in independent molecular form. These compounds are made up of ions or atoms arranged in a lattice structure, rather than discrete molecules.
Many ionic compounds exist as crystals but covalent compounds as molecules (there are exceptions as diamond though). Ionic compounds would be good electrical conductors unlike molecular compounds.
Ionic compounds have higher melting and boiling points than molecular compounds due to the strong electrostatic forces between ions. Ionic compounds are usually solid at room temperature, while molecular compounds can be solid, liquid, or gas. Ionic compounds conduct electricity when dissolved in water, while molecular compounds do not.
Oh, dude, so like, ionic compounds are made up of ions, which are like charged particles, so they exist as ions in their pure state. And molecular compounds are made up of molecules, which are like groups of atoms held together by chemical bonds, so they exist as molecules in their pure state. It's like, basic chemistry, man.
The properties of both ionic and molecular compounds are related to their chemical bonding. Ionic compounds have strong electrostatic interactions between positively and negatively charged ions, resulting in high melting points and conductivity when dissolved in water. Molecular compounds have covalent bonds between atoms and tend to have lower melting points, are usually not conductive, and can exist as gases, liquids, or solids at room temperature.
Ionic compounds such as sodium chloride (NaCl) and metallic compounds like steel do not exist in independent molecular form. These compounds are made up of ions or atoms arranged in a lattice structure, rather than discrete molecules.
Many ionic compounds exist as crystals but covalent compounds as molecules (there are exceptions as diamond though). Ionic compounds would be good electrical conductors unlike molecular compounds.
Ionic compounds have higher melting and boiling points than molecular compounds due to the strong electrostatic forces between ions. Ionic compounds are usually solid at room temperature, while molecular compounds can be solid, liquid, or gas. Ionic compounds conduct electricity when dissolved in water, while molecular compounds do not.
Oh, dude, so like, ionic compounds are made up of ions, which are like charged particles, so they exist as ions in their pure state. And molecular compounds are made up of molecules, which are like groups of atoms held together by chemical bonds, so they exist as molecules in their pure state. It's like, basic chemistry, man.
Water can dissolve some ionic compounds as well as some molecular compounds because of its polarity. It is polar enough to dissolve ionic compounds into their ions. Water does not dissolve molecular compounds by breaking covalent bonds, but through intermolecular forces.
The properties of both ionic and molecular compounds are related to their chemical bonding. Ionic compounds have strong electrostatic interactions between positively and negatively charged ions, resulting in high melting points and conductivity when dissolved in water. Molecular compounds have covalent bonds between atoms and tend to have lower melting points, are usually not conductive, and can exist as gases, liquids, or solids at room temperature.
Ionic compounds typically have higher conductivity than molecular compounds because ionic compounds dissociate into ions in solution, allowing for the flow of electric current. Molecular compounds, on the other hand, do not dissociate into ions in solution and therefore exhibit lower conductivity.
No
Molecular (covalent) compounds are not dissociated in water.
You can determine whether a compound is ionic or molecular based on the types of elements it contains. Ionic compounds typically consist of a metal and a nonmetal, while molecular compounds are made up of nonmetals only. Additionally, ionic compounds tend to have high melting and boiling points, while molecular compounds have lower melting and boiling points.
To determine if a compound is ionic or molecular, you can look at the types of elements it contains. Ionic compounds typically consist of a metal and a nonmetal, while molecular compounds are made up of nonmetals only. Additionally, you can consider the bond type - ionic compounds have electrostatic attractions between ions, while molecular compounds have covalent bonds where atoms share electrons.
No, a brittle compound does not necessarily indicate it is a molecular compound. Brittle compounds can be either molecular or ionic, depending on their chemical bonding. Brittle molecular compounds typically have covalent bonds, while brittle ionic compounds have ionic bonds.