hydrogen atoms have only one shell( K-shell) which can accommodate only two electrons. Therefore each hydrogen atom in hydrogen moleculecontributes one electron forming a pair which is shared between the two atoms. Thus in hydrogen molecule duplet rule is followed and not the octet rule.
An example of a molecule that follows the octet rule is methane (CH4). In methane, carbon forms four covalent bonds with hydrogen, allowing each atom to achieve a full outer shell of electrons (octet) and satisfy the octet rule.
No, BCl3 does not follow the octet rule as boron only has 6 valence electrons in this molecule. Boron can form stable compounds with less than an octet due to its electron deficiency.
BCl3 and BEH2 obey the octet rule because Boron and Beryllium are exceptions to the octet rule and can have stable electron configurations with less than 8 electrons. Cl3CF, NO, and SbF5 do not obey the octet rule because they have incomplete or expanded valence shells.
No, it is possible to satisfy the octet rule for XeF2. Xenon has eight electrons in its outer shell (octet) by sharing two electrons with each of the two fluorine atoms in the molecule, resulting in a stable electron configuration.
yes PCl3 obey octet rule there are 5 electrons in the valence shell of phosphorous it need 3 electron to complete its octet so it form bond with 3 chlorine after bond formation there are 8 electron in its octet it obey octet rule
An example of a molecule that follows the octet rule is methane (CH4). In methane, carbon forms four covalent bonds with hydrogen, allowing each atom to achieve a full outer shell of electrons (octet) and satisfy the octet rule.
Yes, oxygen is an exception to the octet rule. Molecular oxygen can have two unpaired electrons making it a biradical molecule.
six;seven
No, BCl3 does not follow the octet rule as boron only has 6 valence electrons in this molecule. Boron can form stable compounds with less than an octet due to its electron deficiency.
BCl3 and BEH2 obey the octet rule because Boron and Beryllium are exceptions to the octet rule and can have stable electron configurations with less than 8 electrons. Cl3CF, NO, and SbF5 do not obey the octet rule because they have incomplete or expanded valence shells.
Yes, the octet rule states that atoms tend to gain, lose, or share electrons in order to have a full outer shell with eight electrons, which is considered stable. This stability is achieved by achieving the electron configuration of a noble gas.
No, it is possible to satisfy the octet rule for XeF2. Xenon has eight electrons in its outer shell (octet) by sharing two electrons with each of the two fluorine atoms in the molecule, resulting in a stable electron configuration.
yes PCl3 obey octet rule there are 5 electrons in the valence shell of phosphorous it need 3 electron to complete its octet so it form bond with 3 chlorine after bond formation there are 8 electron in its octet it obey octet rule
1. the incomplete octet of a central atom 2. odd electron molecule 3. compound with expanded octet 4. acc. to rule atoms complete their octet to complete their octet to become stable like inert gas, but it is seen that inert gases like xenon are not stabkle they combine with fluorine and oxygen to form no. of compounds. 5. shape of molecule cant be explained 6. stability of molecule cant be explained
Az important rule: any octet has to have eight parts, otherwise it is not an octet.
In diatomic elements, such as hydrogen (H2) or oxygen (O2), each atom follows the octet rule by sharing electrons to achieve a stable electron configuration. This results in a full outer shell of electrons with a total of 8 electrons, satisfying the octet rule. The sharing of electrons allows the diatomic molecule to be stable.
no it does not follow octet rule