H2SO4 is a strong acid and will deliver H(+) which will help to proceed the reaction much faster. Thereby, the sulphate-ions barely react in a redoxreaction.
If we would take HCl for example, the Cl(-) ions can easily take part in a redoxreaction as a reductor.
HNO3 is not used in redox titration because being a good oxidising ageant it oxidises the compound itself whereas HCL is a very volatile and it takes part in the reaction therefore H2SO4 is used in the reaction
Orthophosphoric acid is commonly used as a buffer in redox titrations to maintain the pH of the solution. It also helps to prevent changes in pH that could interfere with the redox reaction being monitored. Additionally, it can complex with metal ions, helping to stabilize them in solution.
Sulfuric acid is used in titration of oxalate ion as it reacts with oxalate ion to form a white precipitate of calcium oxalate, which makes it easier to detect the end point of the titration. The strong acidity of sulfuric acid also helps in preventing the hydrolysis of the calcium oxalate precipitate.
In the titration of sulfuric acid with sodium hydroxide (NaOH), a pH indicator suitable for a strong acid-strong base titration, such as phenolphthalein, can be used. Phenolphthalein changes color at around pH 8.2-10, which is suitable for detecting the endpoint of the neutralization reaction between sulfuric acid and sodium hydroxide.
Sulfuric acid is used because it combines with water to produce electrolytes. Inside a car battery, these electrolytes cover the battery plates,and henceforth is utilized to power the engine turnover on startup.
HNO3 is not used in redox titration because being a good oxidising ageant it oxidises the compound itself whereas HCL is a very volatile and it takes part in the reaction therefore H2SO4 is used in the reaction
Orthophosphoric acid is commonly used as a buffer in redox titrations to maintain the pH of the solution. It also helps to prevent changes in pH that could interfere with the redox reaction being monitored. Additionally, it can complex with metal ions, helping to stabilize them in solution.
Sulfuric acid is used in titration of oxalate ion as it reacts with oxalate ion to form a white precipitate of calcium oxalate, which makes it easier to detect the end point of the titration. The strong acidity of sulfuric acid also helps in preventing the hydrolysis of the calcium oxalate precipitate.
In the titration of sulfuric acid with sodium hydroxide (NaOH), a pH indicator suitable for a strong acid-strong base titration, such as phenolphthalein, can be used. Phenolphthalein changes color at around pH 8.2-10, which is suitable for detecting the endpoint of the neutralization reaction between sulfuric acid and sodium hydroxide.
You can use either the nitric or hydrochloric acid as a replacement of the sulphuric acid.
Mostly sulphuric acid
Sulfuric acid is used because it combines with water to produce electrolytes. Inside a car battery, these electrolytes cover the battery plates,and henceforth is utilized to power the engine turnover on startup.
To find the concentration of an acid from a titration, you would use the stoichiometry of the reaction to determine the moles of acid that reacted with the known concentration of base. Then, you would use this information to calculate the concentration of the acid by dividing the moles of acid by the volume of the acid used in the titration.
No, sulphuric acid is used.
Redox titration can be used to determine the lithium content in lithium batteries by titrating lithium ions with an oxidizing or reducing agent. This method helps ensure the accuracy of the lithium content in the batteries, which is critical for their performance. Redox titration is an analytical technique that allows for precise quantification of lithium ions present in the battery electrolyte or active materials.
sulphuric acid
Using hydrochloric acid instead of sulfuric acid in a titration may result in inaccurate results because the equivalence point may be difficult to identify due to the similar dissociation behavior of the two acids. Additionally, hydrochloric acid can partially evaporate during the titration process, leading to a loss of accuracy in determining the concentration of the solution being analyzed.