Gas flow is used mainly for detection of longer wavelengths. Gas flows through continuously. The gas is usually 90% argon, 10% methane ("P10"), although the argon may be replaced with neon or helium where very long wavelengths (over 5 nm) are to be detected. The argon is ionised by incoming X-ray photons, and the electric field multiplies this charge into a measurable pulse. The methane suppresses the formation of fluorescent photons caused by recombination of the argon ions with stray electrons.
You would use the ideal gas law formula: PV = nRT, where P is pressure, V is volume, n is moles of gas, R is the gas constant, and T is temperature in Kelvin. Rearrange the formula to V = (nRT)/P to calculate volume.
Make V explicit in the general for of the gas law: P.V = n.R.T then you get V = (n.R.T) / P
As the container becomes smaller, the gas particles are forced closer together, increasing the frequency of collisions with the container walls. This leads to an increase in gas pressure due to the higher concentration of gas particles striking the walls per unit area.
(Explanation) this is simply taking the ideal gas law PV=nRT, and dividing by P on both sides to isolate the V, kinda like solving an algebra problem
The formula is: T = PV/nR, Where: * T is the temperature in kelvin * P is the pressure in atmospheres * n is the number of moles * R is the gas constant
Gas flow is used mainly for detection of longer wavelengths. Gas flows through continuously. The gas is usually 90% argon, 10% methane ("P10"), although the argon may be replaced with neon or helium where very long wavelengths (over 5 nm) are to be detected. The argon is ionised by incoming X-ray photons, and the electric field multiplies this charge into a measurable pulse. The methane suppresses the formation of fluorescent photons caused by recombination of the argon ions with stray electrons.
You would use the ideal gas law formula: PV = nRT, where P is pressure, V is volume, n is moles of gas, R is the gas constant, and T is temperature in Kelvin. Rearrange the formula to V = (nRT)/P to calculate volume.
Make V explicit in the general for of the gas law: P.V = n.R.T then you get V = (n.R.T) / P
As the container becomes smaller, the gas particles are forced closer together, increasing the frequency of collisions with the container walls. This leads to an increase in gas pressure due to the higher concentration of gas particles striking the walls per unit area.
1stColor(139,0,0) 2ndColor(139,139,139) ScaleZ(510) ScaleY(560) ScaleX(920) <p> c(27,224,63) p(10,-23,61) p(10,-20,61) p(10,-20,-61) p(10,-23,-61) </p> <p> c(27,224,63) gr(30) p(10,-20,61) p(10,18,61) p(10,18,57) p(10,-20,57) </p> <p> c(27,224,63) p(10,-10,57) p(10,0,57) p(10,0,-57) p(10,-10,-57) </p> <p> c(0,0,0) gr(30) p(10,-20,57) p(10,-10,57) p(10,-10,36) p(10,-20,36) </p> <p> c(0,0,0) gr(30) p(10,-20,33) p(10,-10,33) p(10,-10,13) p(10,-20,13) </p> <p> c(0,0,0) p(10,-20,10) p(10,-10,10) p(10,-10,-10) p(10,-20,-10) </p> <p> c(0,0,0) gr(30) p(10,-20,-13) p(10,-10,-13) p(10,-10,-34) p(10,-20,-34) </p> <p> c(0,0,0) gr(30) p(10,-20,-37) p(10,-10,-37) p(10,-10,-57) p(10,-20,-57) </p> <p> c(0,0,0) p(10,0,57) p(10,10,57) p(10,10,36) p(10,0,36) </p> <p> c(0,0,0) p(10,0,33) p(10,10,33) p(10,10,13) p(10,0,13) </p> <p> c(0,0,0) p(10,0,10) p(10,10,10) p(10,10,-10) p(10,0,-10) </p> <p> c(0,0,0) p(10,0,-13) p(10,10,-13) p(10,10,-34) p(10,0,-34) </p> <p> c(0,0,0) p(10,0,-37) p(10,10,-37) p(10,10,-57) p(10,0,-57) </p> <p> c(27,224,63) gr(30) p(10,-20,36) p(10,-10,36) p(10,-10,33) p(10,-20,33) </p> <p> c(27,224,63) p(10,-20,13) p(10,-10,13) p(10,-10,10) p(10,-20,10) </p> <p> c(27,224,63) p(10,-20,-10) p(10,-10,-10) p(10,-10,-13) p(10,-20,-13) </p> <p> c(27,224,63) gr(30) p(10,-20,-34) p(10,-10,-34) p(10,-10,-37) p(10,-20,-37) </p> <p> c(27,224,63) p(10,0,36) p(10,10,36) p(10,10,33) p(10,0,33) </p> <p> c(27,224,63) p(10,0,13) p(10,10,13) p(10,10,10) p(10,0,10) </p> <p> c(27,224,63) p(10,0,-10) p(10,10,-10) p(10,10,-13) p(10,0,-13) </p> <p> c(27,224,63) p(10,0,-34) p(10,10,-34) p(10,10,-37) p(10,0,-37) </p> <p> c(27,224,63) gr(30) p(10,-20,-57) p(10,18,-57) p(10,18,-61) p(10,-20,-61) </p> <p> c(27,224,63) p(10,18,-44) p(10,23,-47) p(10,23,-61) p(10,18,-61) </p> <p> c(27,224,63) p(10,10,57) p(10,18,57) p(10,18,-57) p(10,10,-57) </p> <p> c(27,224,63) p(10,18,44) p(10,23,47) p(10,23,61) p(10,18,61) </p> <p> c(27,224,63) p(10,18,35) p(10,23,33) p(10,23,-33) p(10,18,-35) </p> // Mirror of the 26 polygons above along the X axis: <p> c(27,224,63) p(-10,-23,61) p(-10,-20,61) p(-10,-20,-61) p(-10,-23,-61) </p> <p> c(27,224,63) p(-10,-20,61) p(-10,18,61) p(-10,18,57) p(-10,-20,57) </p> <p> c(27,224,63) p(-10,-10,57) p(-10,0,57) p(-10,0,-57) p(-10,-10,-57) </p> <p> c(0,0,0) gr(30) p(-10,-20,57) p(-10,-10,57) p(-10,-10,36) p(-10,-20,36) </p> <p> c(0,0,0) gr(30) p(-10,-20,33) p(-10,-10,33) p(-10,-10,13) p(-10,-20,13) </p> <p> c(0,0,0) p(-10,-20,10) p(-10,-10,10) p(-10,-10,-10) p(-10,-20,-10) </p> <p> c(0,0,0) gr(30) p(-10,-20,-13) p(-10,-10,-13) p(-10,-10,-34) p(-10,-20,-34) </p> <p> c(0,0,0) gr(30) p(-10,-20,-37) p(-10,-10,-37) p(-10,-10,-57) p(-10,-20,-57) </p> <p> c(0,0,0) p(-10,0,57) p(-10,10,57) p(-10,10,36) p(-10,0,36) </p> <p> c(0,0,0) p(-10,0,33) p(-10,10,33) p(-10,10,13) p(-10,0,13) </p> <p> c(0,0,0) p(-10,0,10) p(-10,10,10) p(-10,10,-10) p(-10,0,-10) </p> <p> c(0,0,0) p(-10,0,-13) p(-10,10,-13) p(-10,10,-34) p(-10,0,-34) </p> <p> c(0,0,0) gr(30) p(-10,0,-37) p(-10,10,-37) p(-10,10,-57) p(-10,0,-57) </p> <p> c(27,224,63) p(-10,-20,36) p(-10,-10,36) p(-10,-10,33) p(-10,-20,33) </p> <p> c(27,224,63) p(-10,-20,13) p(-10,-10,13) p(-10,-10,10) p(-10,-20,10) </p> <p> c(27,224,63) p(-10,-20,-10) p(-10,-10,-10) p(-10,-10,-13) p(-10,-20,-13) </p> <p> c(27,224,63) p(-10,-20,-34) p(-10,-10,-34) p(-10,-10,-37) p(-10,-20,-37) </p> <p> c(27,224,63) p(-10,0,36) p(-10,10,36) p(-10,10,33) p(-10,0,33) </p> <p> c(27,224,63) p(-10,0,13) p(-10,10,13) p(-10,10,10) p(-10,0,10) </p> <p> c(27,224,63) p(-10,0,-10) p(-10,10,-10) p(-10,10,-13) p(-10,0,-13) </p> <p> c(27,224,63) p(-10,0,-34) p(-10,10,-34) p(-10,10,-37) p(-10,0,-37) </p> <p> c(27,224,63) p(-10,-20,-57) p(-10,18,-57) p(-10,18,-61) p(-10,-20,-61) </p> <p> c(27,224,63) p(-10,18,-44) p(-10,23,-47) p(-10,23,-61) p(-10,18,-61) </p> <p> c(27,224,63) p(-10,10,57) p(-10,18,57) p(-10,18,-57) p(-10,10,-57) </p> <p> c(27,224,63) p(-10,18,44) p(-10,23,47) p(-10,23,61) p(-10,18,61) </p> <p> c(27,224,63) p(-10,18,35) p(-10,23,33) p(-10,23,-33) p(-10,18,-35) </p> // End of mirror <p> c(27,224,63) p(10,18,-61) p(10,23,-61) p(-10,23,-61) p(-10,18,-61) </p> <p> c(27,224,63) lightB p(10,12,-61) p(10,18,-61) p(7,18,-61) p(7,12,-61) </p> <p> c(27,224,63) lightB p(-10,12,-61) p(-10,18,-61) p(-7,18,-61) p(-7,12,-61) </p> <p> c(27,224,63) p(7,12,-61) p(7,18,-61) p(-7,18,-61) p(-7,12,-61) </p> <p> c(27,224,63) p(10,10,-61) p(10,12,-61) p(-10,12,-61) p(-10,10,-61) </p> <p> c(0,0,0) p(7,0,-61) p(7,10,-61) p(-7,10,-61) p(-7,0,-61) </p> <p> c(27,224,63) p(10,0,-61) p(10,10,-61) p(7,10,-61) p(7,0,-61) </p> <p> c(27,224,63) p(-10,0,-61) p(-10,10,-61) p(-7,10,-61) p(-7,0,-61) </p> <p> c(27,224,63) p(10,0,-61) p(10,-10,-61) p(-10,-10,-61) p(-10,0,-61) </p> <p> c(0,0,0) p(7,-19,-61) p(7,-10,-61) p(-7,-10,-61) p(-7,-19,-61) </p> <p> c(27,224,63) p(10,-19,-61) p(10,-10,-61) p(7,-10,-61) p(7,-19,-61) </p> <p> c(27,224,63) p(-10,-19,-61) p(-10,-10,-61) p(-7,-10,-61) p(-7,-19,-61) </p> <p> c(27,224,63) p(10,-23,-61) p(10,-19,-61) p(-10,-19,-61) p(-10,-23,-61) </p> // Mirror of the 9 polygons above along the Z axis: <p> c(27,224,63) p(10,10,61) p(10,12,61) p(-10,12,61) p(-10,10,61) </p> <p> c(0,0,0) p(7,0,61) p(7,10,61) p(-7,10,61) p(-7,0,61) </p> <p> c(27,224,63) p(10,0,61) p(10,10,61) p(7,10,61) p(7,0,61) </p> <p> c(27,224,63) p(-10,0,61) p(-10,10,61) p(-7,10,61) p(-7,0,61) </p> <p> c(27,224,63) p(10,0,61) p(10,-10,61) p(-10,-10,61) p(-10,0,61) </p> <p> c(0,0,0) p(7,-19,61) p(7,-10,61) p(-7,-10,61) p(-7,-19,61) </p> <p> c(27,224,63) p(10,-19,61) p(10,-10,61) p(7,-10,61) p(7,-19,61) </p> <p> c(27,224,63) p(-10,-19,61) p(-10,-10,61) p(-7,-10,61) p(-7,-19,61) </p> <p> c(27,224,63) p(10,-23,61) p(10,-19,61) p(-10,-19,61) p(-10,-23,61) </p> // End of mirror <p> c(27,224,63) p(10,12,61) p(10,18,61) p(7,18,61) p(7,12,61) </p> <p> c(27,224,63) p(-10,12,61) p(-10,18,61) p(-7,18,61) p(-7,12,61) </p> <p> c(255,255,255) lightF p(2,16,61) p(2,18,61) p(7,18,61) p(7,16,61) </p> <p> c(27,224,63) lightF p(-2,16,61) p(-2,18,61) p(-7,18,61) p(-7,16,61) </p> <p> c(27,224,63) p(7,12,61) p(7,16,61) p(-7,16,61) p(-7,12,61) </p> <p> c(27,224,63) p(10,18,61) p(10,23,61) p(-10,23,61) p(-10,18,61) </p> <p> c(27,224,63) p(2,16,61) p(2,18,61) p(-2,18,61) p(-2,16,61) </p> <p> c(27,224,63) p(-10,-23,61) p(10,-23,61) p(10,-23,-61) p(-10,-23,-61) </p> <p> c(130,130,130) gr(30) p(10,23,33) p(-10,23,33) p(-10,23,-33) p(10,23,-33) </p> <p> c(130,130,130) gr(30) p(10,23,-33) p(-10,23,-33) p(-10,18,-33) p(10,18,-33) </p> <p> c(130,130,130) gr(30) p(10,18,-33) p(-10,18,-33) p(-10,18,-44) p(10,18,-44) </p> <p> c(130,130,130) gr(30) p(10,18,-44) p(-10,18,-44) p(-10,23,-47) p(10,23,-47) </p> // Mirror of the 3 polygons above along the Z axis: <p> c(130,130,130) gr(30) p(10,23,33) p(-10,23,33) p(-10,18,35) p(10,18,35) </p> <p> c(130,130,130) gr(30) p(10,18,35) p(-10,18,35) p(-10,18,44) p(10,18,44) </p> <p> c(130,130,130) gr(30) p(10,18,44) p(-10,18,44) p(-10,23,47) p(10,23,47) </p> // End of mirror <p> c(130,130,130) gr(30) p(10,23,-47) p(-10,23,-47) p(-10,23,-61) p(10,23,-61) </p> <p> c(130,130,130) gr(30) p(10,23,47) p(-10,23,47) p(-10,23,61) p(10,23,61) </p> physics(50,12,50,62,50,0,0,90,10,12,12,94,50,56,4,8330) handling(76) gwgr(40) rims(140,140,140,18,10) w(-8,20,40,11,35,20) w(8,20,40,11,-35,20) gwgr(40) rims(140,140,140,18,10) w(-8,20,-40,0,35,20) w(8,20,-40,0,-35,20) stat(120,104,129,165,162)
Make V explicit in the general for of the gas law: P.V = n.R.T then you get V = (n.R.T) / P
The ideal gas law equation is PV = nRT, where P is pressure, V is volume, n is number of moles, R is the ideal gas constant, and T is temperature in Kelvin. Plugging in the given values, we get P = (10 moles * 0.0821 L.atm/mol.K * 300 K) / 50 L = 4.926 atm.
5/p - 10.
The formula is: T = PV/nR, Where: * T is the temperature in kelvin * P is the pressure in atmospheres * n is the number of moles * R is the gas constant
(Explanation) this is simply taking the ideal gas law PV=nRT, and dividing by P on both sides to isolate the V, kinda like solving an algebra problem
a gas :P
Bunsen burners <P> <P>Bunsen burners are the common ones but we use others too like meths burners which are portable and don't need a gas tap.</P>