answersLogoWhite

0

Gas flow is used mainly for detection of longer wavelengths. Gas flows through continuously. The gas is usually 90% argon, 10% methane ("P10"), although the argon may be replaced with neon or helium where very long wavelengths (over 5 nm) are to be detected. The argon is ionised by incoming X-ray photons, and the electric field multiplies this charge into a measurable pulse. The methane suppresses the formation of fluorescent photons caused by recombination of the argon ions with stray electrons.

User Avatar

Wiki User

13y ago

What else can I help you with?

Related Questions

Why you use p-10 gas in xrf?

Gas flow is used mainly for detection of longer wavelengths. Gas flows through continuously. The gas is usually 90% argon, 10% methane ("P10"), although the argon may be replaced with neon or helium where very long wavelengths (over 5 nm) are to be detected. The argon is ionised by incoming X-ray photons, and the electric field multiplies this charge into a measurable pulse. The methane suppresses the formation of fluorescent photons caused by recombination of the argon ions with stray electrons.


What form of the ideal gas law would you use to calculate the volume of a gas?

You would use the ideal gas law formula: PV = nRT, where P is pressure, V is volume, n is moles of gas, R is the gas constant, and T is temperature in Kelvin. Rearrange the formula to V = (nRT)/P to calculate volume.


What form of the ideal gas law would you use to calculate the volume of the gas?

Make V explicit in the general for of the gas law: P.V = n.R.T then you get V = (n.R.T) / P


What do you think will happen to the gas pressure as you make the container smaller?

As the container becomes smaller, the gas particles are forced closer together, increasing the frequency of collisions with the container walls. This leads to an increase in gas pressure due to the higher concentration of gas particles striking the walls per unit area.


Need for madness codee?

1stColor(139,0,0) 2ndColor(139,139,139) ScaleZ(510) ScaleY(560) ScaleX(920) <p> c(27,224,63) p(10,-23,61) p(10,-20,61) p(10,-20,-61) p(10,-23,-61) </p> <p> c(27,224,63) gr(30) p(10,-20,61) p(10,18,61) p(10,18,57) p(10,-20,57) </p> <p> c(27,224,63) p(10,-10,57) p(10,0,57) p(10,0,-57) p(10,-10,-57) </p> <p> c(0,0,0) gr(30) p(10,-20,57) p(10,-10,57) p(10,-10,36) p(10,-20,36) </p> <p> c(0,0,0) gr(30) p(10,-20,33) p(10,-10,33) p(10,-10,13) p(10,-20,13) </p> <p> c(0,0,0) p(10,-20,10) p(10,-10,10) p(10,-10,-10) p(10,-20,-10) </p> <p> c(0,0,0) gr(30) p(10,-20,-13) p(10,-10,-13) p(10,-10,-34) p(10,-20,-34) </p> <p> c(0,0,0) gr(30) p(10,-20,-37) p(10,-10,-37) p(10,-10,-57) p(10,-20,-57) </p> <p> c(0,0,0) p(10,0,57) p(10,10,57) p(10,10,36) p(10,0,36) </p> <p> c(0,0,0) p(10,0,33) p(10,10,33) p(10,10,13) p(10,0,13) </p> <p> c(0,0,0) p(10,0,10) p(10,10,10) p(10,10,-10) p(10,0,-10) </p> <p> c(0,0,0) p(10,0,-13) p(10,10,-13) p(10,10,-34) p(10,0,-34) </p> <p> c(0,0,0) p(10,0,-37) p(10,10,-37) p(10,10,-57) p(10,0,-57) </p> <p> c(27,224,63) gr(30) p(10,-20,36) p(10,-10,36) p(10,-10,33) p(10,-20,33) </p> <p> c(27,224,63) p(10,-20,13) p(10,-10,13) p(10,-10,10) p(10,-20,10) </p> <p> c(27,224,63) p(10,-20,-10) p(10,-10,-10) p(10,-10,-13) p(10,-20,-13) </p> <p> c(27,224,63) gr(30) p(10,-20,-34) p(10,-10,-34) p(10,-10,-37) p(10,-20,-37) </p> <p> c(27,224,63) p(10,0,36) p(10,10,36) p(10,10,33) p(10,0,33) </p> <p> c(27,224,63) p(10,0,13) p(10,10,13) p(10,10,10) p(10,0,10) </p> <p> c(27,224,63) p(10,0,-10) p(10,10,-10) p(10,10,-13) p(10,0,-13) </p> <p> c(27,224,63) p(10,0,-34) p(10,10,-34) p(10,10,-37) p(10,0,-37) </p> <p> c(27,224,63) gr(30) p(10,-20,-57) p(10,18,-57) p(10,18,-61) p(10,-20,-61) </p> <p> c(27,224,63) p(10,18,-44) p(10,23,-47) p(10,23,-61) p(10,18,-61) </p> <p> c(27,224,63) p(10,10,57) p(10,18,57) p(10,18,-57) p(10,10,-57) </p> <p> c(27,224,63) p(10,18,44) p(10,23,47) p(10,23,61) p(10,18,61) </p> <p> c(27,224,63) p(10,18,35) p(10,23,33) p(10,23,-33) p(10,18,-35) </p> // Mirror of the 26 polygons above along the X axis: <p> c(27,224,63) p(-10,-23,61) p(-10,-20,61) p(-10,-20,-61) p(-10,-23,-61) </p> <p> c(27,224,63) p(-10,-20,61) p(-10,18,61) p(-10,18,57) p(-10,-20,57) </p> <p> c(27,224,63) p(-10,-10,57) p(-10,0,57) p(-10,0,-57) p(-10,-10,-57) </p> <p> c(0,0,0) gr(30) p(-10,-20,57) p(-10,-10,57) p(-10,-10,36) p(-10,-20,36) </p> <p> c(0,0,0) gr(30) p(-10,-20,33) p(-10,-10,33) p(-10,-10,13) p(-10,-20,13) </p> <p> c(0,0,0) p(-10,-20,10) p(-10,-10,10) p(-10,-10,-10) p(-10,-20,-10) </p> <p> c(0,0,0) gr(30) p(-10,-20,-13) p(-10,-10,-13) p(-10,-10,-34) p(-10,-20,-34) </p> <p> c(0,0,0) gr(30) p(-10,-20,-37) p(-10,-10,-37) p(-10,-10,-57) p(-10,-20,-57) </p> <p> c(0,0,0) p(-10,0,57) p(-10,10,57) p(-10,10,36) p(-10,0,36) </p> <p> c(0,0,0) p(-10,0,33) p(-10,10,33) p(-10,10,13) p(-10,0,13) </p> <p> c(0,0,0) p(-10,0,10) p(-10,10,10) p(-10,10,-10) p(-10,0,-10) </p> <p> c(0,0,0) p(-10,0,-13) p(-10,10,-13) p(-10,10,-34) p(-10,0,-34) </p> <p> c(0,0,0) gr(30) p(-10,0,-37) p(-10,10,-37) p(-10,10,-57) p(-10,0,-57) </p> <p> c(27,224,63) p(-10,-20,36) p(-10,-10,36) p(-10,-10,33) p(-10,-20,33) </p> <p> c(27,224,63) p(-10,-20,13) p(-10,-10,13) p(-10,-10,10) p(-10,-20,10) </p> <p> c(27,224,63) p(-10,-20,-10) p(-10,-10,-10) p(-10,-10,-13) p(-10,-20,-13) </p> <p> c(27,224,63) p(-10,-20,-34) p(-10,-10,-34) p(-10,-10,-37) p(-10,-20,-37) </p> <p> c(27,224,63) p(-10,0,36) p(-10,10,36) p(-10,10,33) p(-10,0,33) </p> <p> c(27,224,63) p(-10,0,13) p(-10,10,13) p(-10,10,10) p(-10,0,10) </p> <p> c(27,224,63) p(-10,0,-10) p(-10,10,-10) p(-10,10,-13) p(-10,0,-13) </p> <p> c(27,224,63) p(-10,0,-34) p(-10,10,-34) p(-10,10,-37) p(-10,0,-37) </p> <p> c(27,224,63) p(-10,-20,-57) p(-10,18,-57) p(-10,18,-61) p(-10,-20,-61) </p> <p> c(27,224,63) p(-10,18,-44) p(-10,23,-47) p(-10,23,-61) p(-10,18,-61) </p> <p> c(27,224,63) p(-10,10,57) p(-10,18,57) p(-10,18,-57) p(-10,10,-57) </p> <p> c(27,224,63) p(-10,18,44) p(-10,23,47) p(-10,23,61) p(-10,18,61) </p> <p> c(27,224,63) p(-10,18,35) p(-10,23,33) p(-10,23,-33) p(-10,18,-35) </p> // End of mirror <p> c(27,224,63) p(10,18,-61) p(10,23,-61) p(-10,23,-61) p(-10,18,-61) </p> <p> c(27,224,63) lightB p(10,12,-61) p(10,18,-61) p(7,18,-61) p(7,12,-61) </p> <p> c(27,224,63) lightB p(-10,12,-61) p(-10,18,-61) p(-7,18,-61) p(-7,12,-61) </p> <p> c(27,224,63) p(7,12,-61) p(7,18,-61) p(-7,18,-61) p(-7,12,-61) </p> <p> c(27,224,63) p(10,10,-61) p(10,12,-61) p(-10,12,-61) p(-10,10,-61) </p> <p> c(0,0,0) p(7,0,-61) p(7,10,-61) p(-7,10,-61) p(-7,0,-61) </p> <p> c(27,224,63) p(10,0,-61) p(10,10,-61) p(7,10,-61) p(7,0,-61) </p> <p> c(27,224,63) p(-10,0,-61) p(-10,10,-61) p(-7,10,-61) p(-7,0,-61) </p> <p> c(27,224,63) p(10,0,-61) p(10,-10,-61) p(-10,-10,-61) p(-10,0,-61) </p> <p> c(0,0,0) p(7,-19,-61) p(7,-10,-61) p(-7,-10,-61) p(-7,-19,-61) </p> <p> c(27,224,63) p(10,-19,-61) p(10,-10,-61) p(7,-10,-61) p(7,-19,-61) </p> <p> c(27,224,63) p(-10,-19,-61) p(-10,-10,-61) p(-7,-10,-61) p(-7,-19,-61) </p> <p> c(27,224,63) p(10,-23,-61) p(10,-19,-61) p(-10,-19,-61) p(-10,-23,-61) </p> // Mirror of the 9 polygons above along the Z axis: <p> c(27,224,63) p(10,10,61) p(10,12,61) p(-10,12,61) p(-10,10,61) </p> <p> c(0,0,0) p(7,0,61) p(7,10,61) p(-7,10,61) p(-7,0,61) </p> <p> c(27,224,63) p(10,0,61) p(10,10,61) p(7,10,61) p(7,0,61) </p> <p> c(27,224,63) p(-10,0,61) p(-10,10,61) p(-7,10,61) p(-7,0,61) </p> <p> c(27,224,63) p(10,0,61) p(10,-10,61) p(-10,-10,61) p(-10,0,61) </p> <p> c(0,0,0) p(7,-19,61) p(7,-10,61) p(-7,-10,61) p(-7,-19,61) </p> <p> c(27,224,63) p(10,-19,61) p(10,-10,61) p(7,-10,61) p(7,-19,61) </p> <p> c(27,224,63) p(-10,-19,61) p(-10,-10,61) p(-7,-10,61) p(-7,-19,61) </p> <p> c(27,224,63) p(10,-23,61) p(10,-19,61) p(-10,-19,61) p(-10,-23,61) </p> // End of mirror <p> c(27,224,63) p(10,12,61) p(10,18,61) p(7,18,61) p(7,12,61) </p> <p> c(27,224,63) p(-10,12,61) p(-10,18,61) p(-7,18,61) p(-7,12,61) </p> <p> c(255,255,255) lightF p(2,16,61) p(2,18,61) p(7,18,61) p(7,16,61) </p> <p> c(27,224,63) lightF p(-2,16,61) p(-2,18,61) p(-7,18,61) p(-7,16,61) </p> <p> c(27,224,63) p(7,12,61) p(7,16,61) p(-7,16,61) p(-7,12,61) </p> <p> c(27,224,63) p(10,18,61) p(10,23,61) p(-10,23,61) p(-10,18,61) </p> <p> c(27,224,63) p(2,16,61) p(2,18,61) p(-2,18,61) p(-2,16,61) </p> <p> c(27,224,63) p(-10,-23,61) p(10,-23,61) p(10,-23,-61) p(-10,-23,-61) </p> <p> c(130,130,130) gr(30) p(10,23,33) p(-10,23,33) p(-10,23,-33) p(10,23,-33) </p> <p> c(130,130,130) gr(30) p(10,23,-33) p(-10,23,-33) p(-10,18,-33) p(10,18,-33) </p> <p> c(130,130,130) gr(30) p(10,18,-33) p(-10,18,-33) p(-10,18,-44) p(10,18,-44) </p> <p> c(130,130,130) gr(30) p(10,18,-44) p(-10,18,-44) p(-10,23,-47) p(10,23,-47) </p> // Mirror of the 3 polygons above along the Z axis: <p> c(130,130,130) gr(30) p(10,23,33) p(-10,23,33) p(-10,18,35) p(10,18,35) </p> <p> c(130,130,130) gr(30) p(10,18,35) p(-10,18,35) p(-10,18,44) p(10,18,44) </p> <p> c(130,130,130) gr(30) p(10,18,44) p(-10,18,44) p(-10,23,47) p(10,23,47) </p> // End of mirror <p> c(130,130,130) gr(30) p(10,23,-47) p(-10,23,-47) p(-10,23,-61) p(10,23,-61) </p> <p> c(130,130,130) gr(30) p(10,23,47) p(-10,23,47) p(-10,23,61) p(10,23,61) </p> physics(50,12,50,62,50,0,0,90,10,12,12,94,50,56,4,8330) handling(76) gwgr(40) rims(140,140,140,18,10) w(-8,20,40,11,35,20) w(8,20,40,11,-35,20) gwgr(40) rims(140,140,140,18,10) w(-8,20,-40,0,35,20) w(8,20,-40,0,-35,20) stat(120,104,129,165,162)


What form of ideal gas law would you use to calculate the volume of gas?

Make V explicit in the general for of the gas law: P.V = n.R.T then you get V = (n.R.T) / P


What is the pressure of 10 moles of gas inside of a 50L hot air balloon at a temperature of 300k?

The ideal gas law equation is PV = nRT, where P is pressure, V is volume, n is number of moles, R is the ideal gas constant, and T is temperature in Kelvin. Plugging in the given values, we get P = (10 moles * 0.0821 L.atm/mol.K * 300 K) / 50 L = 4.926 atm.


What form of ideal gas law would you use to calculate the temperature of a gas?

The formula is: T = PV/nR, Where: * T is the temperature in kelvin * P is the pressure in atmospheres * n is the number of moles * R is the gas constant


What form of the ideal gas would you use to calculate the volume of a gas?

(Explanation) this is simply taking the ideal gas law PV=nRT, and dividing by P on both sides to isolate the V, kinda like solving an algebra problem


What is the volume occupied by 10.0 g of argon gas at a pressure of 1.12 ATM and a temperature of 307 K?

To calculate the volume of a gas, you can use the ideal gas law: (V = \frac{nRT}{P}), where (n) is the number of moles of the gas, (R) is the ideal gas constant, (T) is the temperature in Kelvin, and (P) is the pressure. First, calculate the number of moles of argon using its molar mass. Then, plug the values into the ideal gas law to find the volume.


10 less than the quotient of 5 and a number p?

5/p - 10.


What are lab burners called?

Bunsen burners <P> <P>Bunsen burners are the common ones but we use others too like meths burners which are portable and don't need a gas tap.</P>