Start with the maximum flow speed (metres per second) for your liquid, then mutiply by the area of the pipe in square metres, the result is maximum volume flow rate in cubic metres per second.
I want to know based on flow and pressure how to calculate diameter of the pipe
t = PxDxA/2E where, t = thickness P = pressure D = pipe Diameter A = factor of safety E = tensile strength of pipe
42 42.000 STD .375 166.7141.250 42 42.000 XHY .500221.61 41.000 Weights are 166.71 per ft. and 221.61.
The invert level of an existing pipe is the result when you subtract the depth/height of the lowest elevation/level of the inside/inner portion of the existing pipe from the surface reference elevation most commonly known as benchmark (BM). Benchmark (BM) can usually be found on permanent structure in the surface/ground.
Mass flow in air can be calculated if you know the pressure drop across the pipe. Then it can be calculated using Darcy's Equation for Pressure,which is: P2-P1 = (4fLv*v)/d*2*g where, P2 & P1 are pressures at two points in pipe, f = friction factor, L= length of pipe, v = velocity of fluid, d = diameter of pipe, g = gravity. from this formula we can calculate the velocity and hence the flow rate.
To calculate pressure in a pipe, you can use the formula: Pressure Force / Area. This means that pressure is equal to the force applied divided by the cross-sectional area of the pipe. By knowing the force and the area, you can calculate the pressure within the pipe.
To calculate the pressure in a pipe, you can use the formula: Pressure Force/Area. This means that pressure is equal to the force applied on the fluid inside the pipe divided by the cross-sectional area of the pipe. By knowing the force and the area, you can determine the pressure within the pipe.
To calculate velocity in a pipe, you can use the formula: velocity flow rate / cross-sectional area of the pipe. The flow rate is the volume of fluid passing through the pipe per unit time, and the cross-sectional area is the area of the pipe's opening. By dividing the flow rate by the cross-sectional area, you can determine the velocity of the fluid moving through the pipe.
pai/4xdsquare
To calculate how much paint needed for pipe painting, the pipe must first be measure for area. After the area is calculated, the amount of paint needed can easily be found out by figuring out how much area each can covers.
To find the pressure in a pipe, you can use the formula: Pressure Force/Area. This means that pressure is equal to the force applied to the fluid in the pipe divided by the cross-sectional area of the pipe. By measuring the force and the area, you can calculate the pressure in the pipe.
To calculate flow rate in a pipe system, you can use the formula Q A V, where Q is the flow rate, A is the cross-sectional area of the pipe, and V is the velocity of the fluid. You can measure the area of the pipe and the velocity of the fluid to determine the flow rate.
To calculate the surface area of a pipe fitting, you need to first determine the individual shapes that make up the fitting, such as cylinders, cones, or spheres. Then, calculate the surface area of each shape using the appropriate formulas (e.g., for a cylinder, the formula is 2πrh + 2πr^2). Finally, sum up the surface areas of all the individual shapes to get the total surface area of the pipe fitting.
To calculate flow velocity in a pipe, you can use the formula: velocity flow rate / cross-sectional area of the pipe. The flow rate is typically measured in volume per unit time (e.g. cubic meters per second), and the cross-sectional area is the area of the pipe's opening. By dividing the flow rate by the cross-sectional area, you can determine the velocity of the flow within the pipe.
To calculate the velocity of water in a pipe, you can use the formula: velocity flow rate / cross-sectional area of the pipe. The flow rate can be measured in liters per second or cubic meters per second, and the cross-sectional area is the area of the pipe's opening. By dividing the flow rate by the cross-sectional area, you can determine the velocity of the water flowing through the pipe.
The formula to calculate the velocity of fluid flow within a pipe is V Q/A, where V is the velocity, Q is the flow rate, and A is the cross-sectional area of the pipe.
To calculate the velocity of a pipe flow, you can use the formula: Velocity Flow rate / Cross-sectional area of the pipe. The flow rate is typically measured in cubic meters per second, and the cross-sectional area is the area of the pipe's opening in square meters. By dividing the flow rate by the cross-sectional area, you can determine the velocity of the flow in meters per second.