answersLogoWhite

0


Best Answer

A prototype or model. This may be "real" or "numerical".

A real model or prototype is a version of the design built from the same materials as the final object but often at a much smaller scale. This can be used to undertake tests in a laboratory on variables or parameters that are too complicated to treat (test) mathematically.

With the rapid advancement in the processing power and memory capacity of computers over the last 30 years, increasing use is now made of numerical modelling software.

In this process, a numerical model or prototype is created within a piece of computer software that would allow you to test the behaviour of the design under differing conditions and to make changes very quickly to a design to see what effect they may have.

For example a bridge design may be input into numerical modelling software which would allow you to "create" variable wind strengths that act on the bridge. You would also input realistic strength and stiffness properties for the material and also realistic "oscillation" properties and the software would calculate the response of the bridge to the varying conditions. This may demonstrate that the bridge is "safe" or that refinements are needed to the design which can be made rapidly in the numerical model and retested without the requirement for a new real prototype to be constructed.

User Avatar

Wiki User

13y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What do engineers construct to test a new design?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Civil Engineering

Who is making cement civil engineers or chemical engineers?

If your asking who does the mix design for cement or concrete that would normally be done by civil/construction engineers. The chemical engineers may play a roll if they are creating a new additive to make the cement or concrete dry faster while retaining or improving its design strength.


What is the civil engineers income?

The income of a civil engineer can vary depending on the area. A civil engineer in New York will have a higher income than one in Iowa. Average yearly income for civil engineers in New York can be as much as $97,000 and in Iowa can be as much as $77,000.


How many years do civil engineers go to college for?

Engineers typically enter the occupation with a bachelor's degree in an engineering specialty, but some basic research positions may require a graduate degree. Engineers offering their services directly to the public must be licensed. Continuing education to keep current with rapidly changing technology is important for engineers. Education and training. A bachelor's degree in engineering is required for almost all entry-level engineering jobs. College graduates with a degree in a natural science or mathematics occasionally may qualify for some engineering jobs, especially in specialties in high demand. Most engineering degrees are granted in electrical, electronics, mechanical, or civil engineering. However, engineers trained in one branch may work in related branches. For example, many aerospace engineers have training in mechanical engineering. This flexibility allows employers to meet staffing needs in new technologies and specialties in which engineers may be in short supply. It also allows engineers to shift to fields with better employment prospects or to those that more closely match their interests. Most engineering programs involve a concentration of study in an engineering specialty, along with courses in both mathematics and the physical and life sciences. Many programs also include courses in general engineering. A design course, sometimes accompanied by a computer or laboratory class or both, is part of the curriculum of most programs. General courses not directly related to engineering, such as those in the social sciences or humanities, are also often required. In addition to the standard engineering degree, many colleges offer 2-year or 4-year degree programs in engineering technology. These programs, which usually include various hands-on laboratory classes that focus on current issues in the application of engineering principles, prepare students for practical design and production work, rather than for jobs that require more theoretical and scientific knowledge. Graduates of 4-year technology programs may get jobs similar to those obtained by graduates with a bachelor's degree in engineering. Engineering technology graduates, however, are not qualified to register as professional engineers under the same terms as graduates with degrees in engineering. Some employers regard technology program graduates as having skills between those of a technician and an engineer. Graduate training is essential for engineering faculty positions and many research and development programs, but is not required for the majority of entry-level engineering jobs. Many experienced engineers obtain graduate degrees in engineering or business administration to learn new technology and broaden their education. Many high-level executives in government and industry began their careers as engineers. About 1,830 programs at colleges and universities offer bachelor's degrees in engineering that are accredited by the Accreditation Board for Engineering and Technology (ABET), Inc., and there are another 710 accredited programs in engineering technology. ABET accreditation is based on a program's faculty, curriculum, and facilities; the achievement of a program's students; program improvements; and institutional commitment to specific principles of quality and ethics. Although most institutions offer programs in the major branches of engineering, only a few offer programs in the smaller specialties. Also, programs of the same title may vary in content. For example, some programs emphasize industrial practices, preparing students for a job in industry, whereas others are more theoretical and are designed to prepare students for graduate work. Therefore, students should investigate curriculums and check accreditations carefully before selecting a college. Admissions requirements for undergraduate engineering schools include a solid background in mathematics (algebra, geometry, trigonometry, and calculus) and science (biology, chemistry, and physics), with courses in English, social studies, and humanities. Bachelor's degree programs in engineering typically are designed to last 4 years, but many students find that it takes between 4 and 5 years to complete their studies. In a typical 4-year college curriculum, the first 2 years are spent studying mathematics, basic sciences, introductory engineering, humanities, and social sciences. In the last 2 years, most courses are in engineering, usually with a concentration in one specialty. Some programs offer a general engineering curriculum; students then specialize on the job or in graduate school. Some engineering schools have agreements with 2-year colleges whereby the college provides the initial engineering education, and the engineering school automatically admits students for their last 2 years. In addition, a few engineering schools have arrangements that allow students who spend 3 years in a liberal arts college studying pre-engineering subjects and 2 years in an engineering school studying core subjects to receive a bachelor's degree from each school. Some colleges and universities offer 5-year master's degree programs. Some 5-year or even 6-year cooperative plans combine classroom study and practical work, permitting students to gain valuable experience and to finance part of their education. Licensure. All 50 States and the District of Columbia require licensure for engineers who offer their services directly to the public. Engineers who are licensed are called professional engineers (PE). This licensure generally requires a degree from an ABET-accredited engineering program, 4 years of relevant work experience, and successful completion of a State examination. Recent graduates can start the licensing process by taking the examination in two stages. The initial Fundamentals of Engineering (FE) examination can be taken upon graduation. Engineers who pass this examination commonly are called engineers in training (EIT) or engineer interns (EI). After acquiring suitable work experience, EITs can take the second examination, the Principles and Practice of Engineering exam. Several States have imposed mandatory continuing education requirements for relicensure. Most States recognize licensure from other States, provided that the manner in which the initial license was obtained meets or exceeds their own licensure requirements. Many civil, electrical, mechanical, and chemical engineers are licensed PEs. Independent of licensure, various certification programs are offered by professional organizations to demonstrate competency in specific fields of engineering. Other qualifications.Engineers should be creative, inquisitive, analytical, and detail oriented. They should be able to work as part of a team and to communicate well, both orally and in writing. Communication abilities are becoming increasingly important as engineers frequently interact with specialists in a wide range of fields outside engineering. Certification and advancement.Beginning engineering graduates usually work under the supervision of experienced engineers and, in large companies, also may receive formal classroom or seminar-type training. As new engineers gain knowledge and experience, they are assigned more difficult projects with greater independence to develop designs, solve problems, and make decisions. Engineers may advance to become technical specialists or to supervise a staff or team of engineers and technicians. Some may eventually become engineering managers or enter other managerial or sales jobs. In sales, an engineering background enables them to discuss a product's technical aspects and assist in product planning, installation, and use. (See the statements under management and business and financial operations occupations, and the statement on sales engineers elsewhere in the Handbook.) Numerous professional certifications for engineers exist and may be beneficial for advancement to senior technical or managerial positions. Many certification programs are offered by the professional societies listed as sources of additional information for engineering specialties at the end of this statement. For the source and more detailed information concerning this subject, click on the related links section indicated below.


How to do own professional job or training needed for that as my BS civil engineering achievement 12 years old with out any practice after graduation and it is from other country.?

The following is by and according to the U.S. Department of Labor and particular to the education and training required for an engineer.Engineers typically enter the occupation with a bachelor's degree in an engineering specialty, but some basic research positions may require a graduate degree. Engineers offering their services directly to the public must be licensed. Continuing education to keep current with rapidly changing technology is important for engineers. Education and training. A bachelor's degree in engineering is required for almost all entry-level engineering jobs. College graduates with a degree in a natural science or mathematics occasionally may qualify for some engineering jobs, especially in specialties in high demand. Most engineering degrees are granted in electrical, electronics, mechanical, or civil engineering. However, engineers trained in one branch may work in related branches. For example, many aerospace engineers have training in mechanical engineering. This flexibility allows employers to meet staffing needs in new technologies and specialties in which engineers may be in short supply. It also allows engineers to shift to fields with better employment prospects or to those that more closely match their interests. Most engineering programs involve a concentration of study in an engineering specialty, along with courses in both mathematics and the physical and life sciences. Many programs also include courses in general engineering. A design course, sometimes accompanied by a computer or laboratory class or both, is part of the curriculum of most programs. General courses not directly related to engineering, such as those in the social sciences or humanities, are also often required. In addition to the standard engineering degree, many colleges offer 2-year or 4-year degree programs in engineering technology. These programs, which usually include various hands-on laboratory classes that focus on current issues in the application of engineering principles, prepare students for practical design and production work, rather than for jobs that require more theoretical and scientific knowledge. Graduates of 4-year technology programs may get jobs similar to those obtained by graduates with a bachelor's degree in engineering. Engineering technology graduates, however, are not qualified to register as professional engineers under the same terms as graduates with degrees in engineering. Some employers regard technology program graduates as having skills between those of a technician and an engineer. Graduate training is essential for engineering faculty positions and many research and development programs, but is not required for the majority of entry-level engineering jobs. Many experienced engineers obtain graduate degrees in engineering or business administration to learn new technology and broaden their education. Many high-level executives in government and industry began their careers as engineers. About 1,830 programs at colleges and universities offer bachelor's degrees in engineering that are accredited by the Accreditation Board for Engineering and Technology (ABET), Inc., and there are another 710 accredited programs in engineering technology. ABET accreditation is based on a program's faculty, curriculum, and facilities; the achievement of a program's students; program improvements; and institutional commitment to specific principles of quality and ethics. Although most institutions offer programs in the major branches of engineering, only a few offer programs in the smaller specialties. Also, programs of the same title may vary in content. For example, some programs emphasize industrial practices, preparing students for a job in industry, whereas others are more theoretical and are designed to prepare students for graduate work. Therefore, students should investigate curriculums and check accreditations carefully before selecting a college. Admissions requirements for undergraduate engineering schools include a solid background in mathematics (algebra, geometry, trigonometry, and calculus) and science (biology, chemistry, and physics), with courses in English, social studies, and humanities. Bachelor's degree programs in engineering typically are designed to last 4 years, but many students find that it takes between 4 and 5 years to complete their studies. In a typical 4-year college curriculum, the first 2 years are spent studying mathematics, basic sciences, introductory engineering, humanities, and social sciences. In the last 2 years, most courses are in engineering, usually with a concentration in one specialty. Some programs offer a general engineering curriculum; students then specialize on the job or in graduate school. Some engineering schools have agreements with 2-year colleges whereby the college provides the initial engineering education, and the engineering school automatically admits students for their last 2 years. In addition, a few engineering schools have arrangements that allow students who spend 3 years in a liberal arts college studying pre-engineering subjects and 2 years in an engineering school studying core subjects to receive a bachelor's degree from each school. Some colleges and universities offer 5-year master's degree programs. Some 5-year or even 6-year cooperative plans combine classroom study and practical work, permitting students to gain valuable experience and to finance part of their education. Licensure. All 50 States and the District of Columbia require licensure for engineers who offer their services directly to the public. Engineers who are licensed are called professional engineers (PE). This licensure generally requires a degree from an ABET-accredited engineering program, 4 years of relevant work experience, and successful completion of a State examination. Recent graduates can start the licensing process by taking the examination in two stages. The initial Fundamentals of Engineering (FE) examination can be taken upon graduation. Engineers who pass this examination commonly are called engineers in training (EIT) or engineer interns (EI). After acquiring suitable work experience, EITs can take the second examination, the Principles and Practice of Engineering exam. Several States have imposed mandatory continuing education requirements for relicensure. Most States recognize licensure from other States, provided that the manner in which the initial license was obtained meets or exceeds their own licensure requirements. Many civil, electrical, mechanical, and chemical engineers are licensed PEs. Independent of licensure, various certification programs are offered by professional organizations to demonstrate competency in specific fields of engineering. Other qualifications.Engineers should be creative, inquisitive, analytical, and detail oriented. They should be able to work as part of a team and to communicate well, both orally and in writing. Communication abilities are becoming increasingly important as engineers frequently interact with specialists in a wide range of fields outside engineering. Certification and advancement.Beginning engineering graduates usually work under the supervision of experienced engineers and, in large companies, also may receive formal classroom or seminar-type training. As new engineers gain knowledge and experience, they are assigned more difficult projects with greater independence to develop designs, solve problems, and make decisions. Engineers may advance to become technical specialists or to supervise a staff or team of engineers and technicians. Some may eventually become engineering managers or enter other managerial or sales jobs. In sales, an engineering background enables them to discuss a product's technical aspects and assist in product planning, installation, and use. (See the statements under management and business and financial operations occupations, and the statement on sales engineers elsewhere in the Handbook.) Numerous professional certifications for engineers exist and may be beneficial for advancement to senior technical or managerial positions. Many certification programs are offered by the professional societies listed as sources of additional information for engineering specialties at the end of this statement. For the source and more detailed information concerning your request, click on the related links section (U.S. Department of Labor) indicated below this answer box.


What do the colours of civil engineers helmet represent?

Hard hat colors can signify different roles on construction sites. For instance, white often signifies supervisors or engineers, blue technical advisers, green is commonly worn by safety inspectors, yellow laborers, and orange or pink, new employees and/or visitors. At one time, blasters traditionally wore red. These color designations will vary from company to company and work site to work site. The most universal is white for managers and supervisors. Derogatory references to "shiny white hard hats" are common on many sites. On very large projects involving a number of companies, it is sometimes the practice for all the employees of a company to wear the same color hat.

Related questions

What might engineers used to test a new software design?

An engineer might use a computer to test a new software design. They also might use a cellphone, tablet or other device to test new software designs.


How might a scientist use a model to test a new airplane design?

Engineers put very accurate models of new airplanes in wind tunnels to see how aerodynamic they are.


What is the purpose of engineers?

To assist in removing obstacles and classifying bridges.


What is the role of computer engineers?

Computer engineers must find all the unanswered questions of other engineers and design new models.


What do engineers use to test designs of new technologies?

They use models to test their designs of new technologies.


What is a wetland designer?

helps to design and construct wetlands for new building and housing developments.


What process do engineers use to design a new machine to solve a problem?

problem solving process


Who is making cement civil engineers or chemical engineers?

If your asking who does the mix design for cement or concrete that would normally be done by civil/construction engineers. The chemical engineers may play a roll if they are creating a new additive to make the cement or concrete dry faster while retaining or improving its design strength.


What are engineering?

Engineers are basically creators. There are many types of engineers, who design and produce new and improved products. Some types are Aerospace, Electrical, Mechanical, Chemical, Civil, and Architectural.


What do micro engineers do?

Micro engineers work on very tiny equipment and materials which fit into small spaces. They design scaled down versions of existing ideas and adapt them to new environments.


What do you call the type of engineers that design rockets?

Aerospace engineers design, test, and supervise the manufacture of aircraft, spacecraft, and missiles. Those who work with aircraft are called aeronautical engineers, and those working specifically with spacecraft are astronautical engineers. Aerospace engineers develop new technologies for use in aviation, defense systems, and space exploration, often specializing in areas such as structural design, guidance, navigation and control, instrumentation and communication, and production methods. They also may specialize in a particular type of aerospace product, such as commercial aircraft, military fighter jets, helicopters, spacecraft, or missiles and rockets, and may become experts in aerodynamics, thermodynamics, celestial mechanics, propulsion, acoustics, or guidance and control systems.


What do engineers use to test their designs of new technologies?

They use models to test their designs of new technologies.