30-100 Gpa (in compression)
According to the "Structural Engineer's Pocket Book" concrete commonly has a modulus of elasticity in the range of 17 - 30 GPa.The exact value of modulus of elasticity depends on the concrete's uniaxial compressive strength after a cure time of 28 days.These values are related using the following:Emc = 4700 x sqrt(UCS)Where:Emc = Elastic Modulus (MPa)UCS = Uniaxial Compressive Strength of Concrete after 28 days (MPa).Source:Cobb, F. (2009). Structural Engineer's Pocket Book, Second Edition. London, Butterworth-Heinemann.
The tangent modulus of steel varies depending on if the steel has yielded.If the steel has not yielded, and is still elastic (stresses less than approx. 275 MPa (39885 Psi) the tangent modulus will be equal to the Young's Modulus, 205 GPa (39885367)If the steel has yielded, the tangent modulus will be related by the Ramsberg-Osgood Equation, but a reasonable value to use would be approx. 1.5 GPa (2175565 Psi)
Young’s Modulus (also referred to as the Elastic Modulus or Tensile Modulus), is a measure of mechanical properties of linear elastic solids like rods, wires, and such. Other numbers measure the elastic properties of a material, like Bulk modulus and shear modulus, but the value of Young’s Modulus is most commonly used. This is because it gives us information about the tensile elasticity of a material (ability to deform along an axis). Young’s modulus describes the relationship between stress (force per unit area) and strain (proportional deformation in an object). The Young’s modulus is named after the British scientist Thomas Young. A solid object deforms when a particular load is applied to it. The body regains its original shape when the pressure is removed if the object is elastic. Many materials are not linear and elastic beyond a small amount of deformation. The constant Young’s modulus applies only to linear elastic substances.
Yes a u-value or SAP calc expert can
Required slump height of M20 for different concrete structures, are normally calculated by the required slump value, which would come out to be 100 lits.
75gpa
Metal is not a specific material, how is this ever going to be answered?!
The Young's modulus of Teflon (PTFE) is around 500-650 MPa, indicating its stiffness and resistance to deformation under stress.
Young's modulus is stress/strain. So if the modulus is high, it means that the stress value is greater compare to that of the material where the modulus is low. or in other words, the strain is very less compared to that of the material having low Young's modulus. So it tells that, if a material has high Young's modulus, the material requires more load for deformation of shape (within elastic limit).
The value for the cleavage plane (100) is 38 GPa and the value for the cleavage plane (001) is 33 GPa.
According to IS 456-2000 the value is square root of 5700fck
Young's Modulus (modulus of elasticity) describes the stress-strain behavior of a material under monotonic loading. The dynamic modulus of elasticity describes the same behavior under cyclic or vibratory loading.
Usually a minimum of 200 GPa. This is the Young's Modulus for structural steel a common material for suspension systems. Steel is great in tension. Concrete is weak in tension.
According to the "Structural Engineer's Pocket Book" concrete commonly has a modulus of elasticity in the range of 17 - 30 GPa.The exact value of modulus of elasticity depends on the concrete's uniaxial compressive strength after a cure time of 28 days.These values are related using the following:Emc = 4700 x sqrt(UCS)Where:Emc = Elastic Modulus (MPa)UCS = Uniaxial Compressive Strength of Concrete after 28 days (MPa).Source:Cobb, F. (2009). Structural Engineer's Pocket Book, Second Edition. London, Butterworth-Heinemann.
what is the flexural modulus value od mild steel
Brass is an alloy and as such can very greatly in its properties depending on its content, so there is no single shear modulus for brass. The only way to be certain is to either test it your self or go by data provided by the manufacturer. If, on the other hand, you are only working theoretically 40GPa is a good estimate for brass in general. Source: http://www.engineeringtoolbox.com/modulus-rigidity-d_946.html
No, it will not change. Young's modulus is a property of the material and not dependent on dimensions. Rigidity, or product of modulus and inertia, will change, as inertia depends on dimensions; but modulus does not change.