answersLogoWhite

0

Identify the exact stamp using a catalog. This could involve learning about perforations, watermarks and colors as well as condition. The catalog will provide a value. The value is what a collector could expect to pay for a stamp in fine/very fine condition. If selling, most cases you would be lucky to get 75% of the catalog, unless it is very valuable, then an auction would be worth looking into. Dealers would be able to take a look at the overall collection and make an offer. Find a local dealer throught the American Stamp Dealers' Association. The most common American catalog for identification is Scott's. Others are Stanley Gibbons, and Minkus. ____ The USSR released 179 stamps in 1964.

User Avatar

Wiki User

16y ago

What else can I help you with?

Related Questions

What is value of tan15' tan195'?

To find the value of (\tan(15^\circ) \tan(195^\circ)), we can use the identity (\tan(195^\circ) = \tan(15^\circ + 180^\circ) = \tan(15^\circ)). Thus, (\tan(195^\circ) = \tan(15^\circ)). Consequently, (\tan(15^\circ) \tan(195^\circ) = \tan(15^\circ) \tan(15^\circ) = \tan^2(15^\circ)). The exact value of (\tan^2(15^\circ)) can be computed, but it is important to note that it will yield a positive value.


What is the value of cos2 67-sin2 23?

To find the value of ( \cos^2 67^\circ - \sin^2 23^\circ ), we can use the identity ( \cos^2 \theta = 1 - \sin^2 \theta ). Since ( \sin 23^\circ = \cos 67^\circ ) (because ( 23^\circ + 67^\circ = 90^\circ )), we have ( \sin^2 23^\circ = \cos^2 67^\circ ). Thus, ( \cos^2 67^\circ - \sin^2 23^\circ = \cos^2 67^\circ - \cos^2 67^\circ = 0 ). Therefore, the value is ( 0 ).


What is the exact value of sin 165?

The exact value of (\sin 165^\circ) can be calculated using the sine subtraction formula. Since (165^\circ = 180^\circ - 15^\circ), we have: [ \sin 165^\circ = \sin(180^\circ - 15^\circ) = \sin 15^\circ ] The value of (\sin 15^\circ) can be derived from the formula (\sin(45^\circ - 30^\circ)), which gives: [ \sin 15^\circ = \sin 45^\circ \cos 30^\circ - \cos 45^\circ \sin 30^\circ = \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2} \cdot \frac{1}{2} = \frac{\sqrt{6} - \sqrt{2}}{4} ] Thus, (\sin 165^\circ = \frac{\sqrt{6} - \sqrt{2}}{4}).


What is the Value of sin 135 in radical form?

The value of (\sin 135^\circ) can be determined using the unit circle or trigonometric identities. Since (135^\circ) is in the second quadrant, where sine is positive, we can express it as (\sin(180^\circ - 45^\circ)). Thus, (\sin 135^\circ = \sin 45^\circ = \frac{\sqrt{2}}{2}). Therefore, the value of (\sin 135^\circ) in radical form is (\frac{\sqrt{2}}{2}).


What is the exact value of tan 195?

The exact value of (\tan 195^\circ) can be found using the tangent addition formula. Since (195^\circ) is in the third quadrant, where tangent is positive, we can express it as (\tan(180^\circ + 15^\circ)). This gives us (\tan 195^\circ = \tan 15^\circ), which is (\frac{\sin 15^\circ}{\cos 15^\circ}). Using the known values, (\tan 15^\circ = 2 - \sqrt{3}). Therefore, (\tan 195^\circ = 2 - \sqrt{3}).


How do you find the exact value of tan 150 degrees?

To find the exact value of (\tan 150^\circ), you can use the fact that (150^\circ) is in the second quadrant, where the tangent function is negative. The reference angle for (150^\circ) is (180^\circ - 150^\circ = 30^\circ). Therefore, (\tan 150^\circ = -\tan 30^\circ). Since (\tan 30^\circ = \frac{1}{\sqrt{3}}), it follows that (\tan 150^\circ = -\frac{1}{\sqrt{3}}), or (-\frac{\sqrt{3}}{3}) when rationalized.


What is 19sin(50) divided by sin(40)?

To find the value of ( \frac{19 \sin(50^\circ)}{\sin(40^\circ)} ), we can use the sine function values. Using the sine of complementary angles, ( \sin(50^\circ) = \cos(40^\circ) ). Therefore, ( \frac{19 \sin(50^\circ)}{\sin(40^\circ)} = \frac{19 \cos(40^\circ)}{\sin(40^\circ)} = 19 \cot(40^\circ) ). For an exact numerical value, you can compute ( 19 \cot(40^\circ) ) using a calculator.


What is the value of tan 15 degree in fraction?

The value of ( \tan 15^\circ ) can be calculated using the tangent subtraction formula: [ \tan(15^\circ) = \tan(45^\circ - 30^\circ) = \frac{\tan 45^\circ - \tan 30^\circ}{1 + \tan 45^\circ \tan 30^\circ} ] Substituting the known values ( \tan 45^\circ = 1 ) and ( \tan 30^\circ = \frac{1}{\sqrt{3}} ), we find: [ \tan(15^\circ) = \frac{1 - \frac{1}{\sqrt{3}}}{1 + 1 \cdot \frac{1}{\sqrt{3}}} = \frac{\sqrt{3} - 1}{\sqrt{3} + 1} ] Thus, ( \tan 15^\circ = 2 - \sqrt{3} ) in its simplest fractional form.


How many degrees can a decagon can rotate onto itself?

A regular decagon can rotate onto itself at angles that are multiples of ( \frac{360^\circ}{10} ), which is ( 36^\circ ). This means it can rotate by ( 0^\circ ), ( 36^\circ ), ( 72^\circ ), ( 108^\circ ), ( 144^\circ ), ( 180^\circ ), ( 216^\circ ), ( 252^\circ ), ( 288^\circ ), and ( 324^\circ ). In total, there are 10 distinct angles (including ( 0^\circ )) at which the decagon can map onto itself.


What is the cofunction of cos 70?

The cofunction of cosine is sine. Therefore, the cofunction of (\cos 70^\circ) is (\sin(90^\circ - 70^\circ)), which simplifies to (\sin 20^\circ). Thus, (\cos 70^\circ = \sin 20^\circ).


What is tan22.5?

The value of (\tan(22.5^\circ)) can be calculated using the half-angle formula for tangent: [ \tan\left(\frac{x}{2}\right) = \frac{1 - \cos(x)}{\sin(x)} ] For (x = 45^\circ), this simplifies to: [ \tan(22.5^\circ) = \sqrt{2} - 1 \approx 0.4142 ] Thus, (\tan(22.5^\circ)) is approximately 0.4142.


What is Cos 15?

The cosine of 15 degrees can be calculated using the cosine subtraction formula: ( \cos(15^\circ) = \cos(45^\circ - 30^\circ) ). This gives us ( \cos(15^\circ) = \cos 45^\circ \cos 30^\circ + \sin 45^\circ \sin 30^\circ ). Plugging in the known values, ( \cos 45^\circ = \frac{\sqrt{2}}{2} ), ( \cos 30^\circ = \frac{\sqrt{3}}{2} ), ( \sin 45^\circ = \frac{\sqrt{2}}{2} ), and ( \sin 30^\circ = \frac{1}{2} ), we find that ( \cos 15^\circ = \frac{\sqrt{6} + \sqrt{2}}{4} ).