Any language L is Turing decidable if there exist a TM M, such that on input string x, where x belong to L, M either accepts it or rejects it........(But never goes into a loop )
Yes, the difference between decidable and recognizable languages in theoretical computer science is clear to me. Decidable languages can be recognized by a Turing machine that always halts and gives a definite answer, while recognizable languages can be recognized by a Turing machine that may not always halt, but will give a positive answer for strings in the language.
An example of a decidable language is the set of all even-length strings. This means that a Turing machine can determine whether a given string has an even number of characters in it.
To prove that a language is decidable, one must show that there exists a Turing machine that can determine whether a given input string belongs to the language in a finite amount of time. This can be done by providing a clear algorithm or procedure that the Turing machine follows to make this determination.
A language is decidable if there exists an algorithm that can determine whether any given input belongs to the language or not. To demonstrate that a language is decidable, one must show that there is a Turing machine or a computer program that can correctly decide whether any input string is in the language or not, within a finite amount of time.
The set of all deterministic finite automata (DFAs) where the language accepted by the DFA is empty, denoted as alldfa hai a is a DFA and L(a) , can be shown to be decidable by constructing a Turing machine that can determine if a given DFA accepts an empty language. This Turing machine can simulate the operation of the DFA on all possible inputs and determine if it ever reaches an accepting state. If the DFA does not accept any input, then the language accepted by the DFA is empty, and the Turing machine can accept.
Turing Decidable Languages are both Turing Rec and Turing Co-Recognizable. If a Language is Not Turing Decidable, either it, or it's complement, must be not Recognizable.
Yes, the difference between decidable and recognizable languages in theoretical computer science is clear to me. Decidable languages can be recognized by a Turing machine that always halts and gives a definite answer, while recognizable languages can be recognized by a Turing machine that may not always halt, but will give a positive answer for strings in the language.
define function formally and using f(x) notation
An example of a decidable language is the set of all even-length strings. This means that a Turing machine can determine whether a given string has an even number of characters in it.
To prove that a language is decidable, one must show that there exists a Turing machine that can determine whether a given input string belongs to the language in a finite amount of time. This can be done by providing a clear algorithm or procedure that the Turing machine follows to make this determination.
A language is decidable if there exists an algorithm that can determine whether any given input belongs to the language or not. To demonstrate that a language is decidable, one must show that there is a Turing machine or a computer program that can correctly decide whether any input string is in the language or not, within a finite amount of time.
The set of all deterministic finite automata (DFAs) where the language accepted by the DFA is empty, denoted as alldfa hai a is a DFA and L(a) , can be shown to be decidable by constructing a Turing machine that can determine if a given DFA accepts an empty language. This Turing machine can simulate the operation of the DFA on all possible inputs and determine if it ever reaches an accepting state. If the DFA does not accept any input, then the language accepted by the DFA is empty, and the Turing machine can accept.
Yes, decidable languages are closed under operations such as union, intersection, concatenation, and complementation. This means that if a language is decidable, performing these operations on it will result in another decidable language.
Decidable languages are closed under union, intersection, concatenation, and Kleene star operations. This means that if two languages are decidable, their union, intersection, concatenation, and Kleene star are also decidable.
Yes, decidable languages are closed under concatenation.
Yes, decidable languages are closed under intersection.
No, it is not possible to show that the language recognized by an infinite pushdown automaton is decidable.