height(node):
if node == null:
return 0
else:
max(height(node.L), height(node.R)) + 1
/*Function to print level order traversal of tree*/
getMaxWidth(tree)
maxWdth = 0
for i = 1 to height(tree)
width = getWidth(tree, i);
if(width > maxWdth)
maxWdth = width
return width
/*Function to get width of a given level */
getWidth(tree, level)
if tree is NULL then return 0;
if level is 1, then return 1;
else if level greater than 1, then
return getWidth(tree->left, level-1) +
getWidth(tree->right, level-1);
To calculate the height of a binary tree, you can use a recursive algorithm that traverses the tree and keeps track of the height at each level. The height of a binary tree is the maximum depth of the tree, which is the longest path from the root to a leaf node.
A binary tree of n elements has n-1 edgesA binary tree of height h has at least h and at most 2h - 1 elementsThe height of a binary tree with n elements is at most n and at least ?log2 (n+1)?
7 its a binary tree
The formula to calculate the height of a binary tree is h log2(n1) - 1, where h is the height of the tree and n is the number of nodes in the tree.
3
The maximum height of a binary tree with 'n' nodes is 'n-1'.
The height of a complete binary tree is in terms of log(n) where n is the number of nodes in the tree. The height of a complete binary tree is the maximum number of edges from the root to a leaf, and in a complete binary tree, the number of leaf nodes is equal to the number of internal nodes plus 1. Since the number of leaf nodes in a complete binary tree is equal to 2^h where h is the height of the tree, we can use log2 to find the height of a complete binary tree in terms of the number of nodes.
if u assign a 0th level to root of binary tree then,the minimum no. of nodes for depth K is k+1.
To calculate the height of a binary tree, you can use a recursive algorithm that finds the maximum height of the left and right subtrees, and then adds 1 to the maximum height. This process is repeated for each node in the tree until the height of the entire tree is calculated.
To find the height of a binary tree, you can use a recursive algorithm that calculates the height of the left and right subtrees, and then returns the maximum height plus one. This process continues until the height of the entire tree is calculated.
height and depth of a tree is equal... but height and depth of a node is not equal because... the height is calculated by traversing from leaf to the given node depth is calculated from traversal from root to the given node.....
The height of a binary search tree is the maximum number of edges from the root node to a leaf node. It represents the longest path from the root to a leaf in the tree.