answersLogoWhite

0

Plotted on arithmetic scale if phi intervals are used or semi-log paper if millimeters are used. More difficult than histogram or frequency curve to interpret at a glance. Independent of sieve interval. Grain-size parameters can be computed from this curve.

User Avatar

Wiki User

10y ago

What else can I help you with?

Related Questions

What is the values of the skewdness and kurtosis coefficient for the normal distribution 0 and 3 respectively?

No. Skewness is 0, but kurtosis is -3, not 3.No. Skewness is 0, but kurtosis is -3, not 3.No. Skewness is 0, but kurtosis is -3, not 3.No. Skewness is 0, but kurtosis is -3, not 3.


What are the formulas in probability?

There are many, many formulae:for different probability distribution functions,for cumulative distribution functions,for moment generating functions,for means, variances, skewness, kurtosis and higher moments.There are many, many formulae:for different probability distribution functions,for cumulative distribution functions,for moment generating functions,for means, variances, skewness, kurtosis and higher moments.There are many, many formulae:for different probability distribution functions,for cumulative distribution functions,for moment generating functions,for means, variances, skewness, kurtosis and higher moments.There are many, many formulae:for different probability distribution functions,for cumulative distribution functions,for moment generating functions,for means, variances, skewness, kurtosis and higher moments.


What is the between skewness and kurtosis?

While skewness is the measure of symmetry, or if one would like to be more precise, the lack of symmetry, kurtosis is a measure of data that is either peaked or flat relative to a normal distribution of a data set. * Skewness: A distribution is symmetric if both the left and right sides are the same relative to the center point. * Kurtosis: A data set that tends to have a distant peak near the mean value, have heavy tails, or decline rapidly is a measure of high kurtosis. Data sets with low Kurtosis would obviously be opposite with a flat mean at the top, and a distribution that is uniform.


What are the advantages of skewness and kurtosis measure?

Skewness and kurtosis are statistical measures that provide insights into the shape of a distribution. Skewness indicates the degree of asymmetry, helping identify whether data is skewed to the left or right, which can inform about potential outliers and the nature of the data. Kurtosis measures the "tailedness" of the distribution, revealing the presence of outliers and the likelihood of extreme values. Together, these measures enhance data analysis by offering a deeper understanding of distribution characteristics beyond central tendency and variability.


Define skewness and kurtosis?

Skewness is a measure of symmetry, or more precisely, the lack of symmetry. A distribution, or data set, is symmetric if it looks the same to the left and right of the center point. Kurtosis is a measure of whether the data are peaked or flat relative to a normal distribution. See related link. By doing a search on the internet, you can find more examples.


What does kurtosis serve?

In probability theory and statistics, kurtosis (from the Greek word κυρτός, kyrtos or kurtos, meaning bulging) is a measure of the "peakedness" of the probability distribution of a real-valued random variable. Higher kurtosis means more of the variance is due to infrequent extreme deviations, as opposed to frequent modestly sized deviations. Sometimes kurtosis gets confused with skewness, so I have added links to both these terms.


What statistical information can you tell about a data set by looking at a histogram?

A histogram provides a visual representation of the distribution of a dataset, allowing you to assess its shape, central tendency, and variability. You can identify patterns such as skewness, modality (unimodal, bimodal, etc.), and the presence of outliers. Additionally, it helps in estimating the range and frequency of data points within specified intervals (bins), giving insights into the data's overall spread and density.


How do you perform data analysis?

We draw a sample from a population,plot it in a graph to understand its nature(central tendency, skewness and kurtosis),also calculate statistical measuers.Then predict a regression equation based on its nature or fit a probability distribution as the need arises.


Which value is NOT always a number in the data set it represents?

The range, median, mean, variance, standard deviation, absolute deviation, skewness, kurtosis, percentiles, quartiles, inter-quartile range - take your pick. It would have been simpler to ask which value IS in the data set!


How do you compute discrete variables?

You do not compute discrete variables. Some variables are discrete others are not. Simple as that. You do not compute people - you can compute their average height, or mass, or shoe size, etc. But that is computing those characteristics, you are not computing people. In the same way, you can compute the mean, variance, standard error, skewness, kurtosis of discrete variables, or the probability of outcomes, but none of that is computing the discrete variable.You do not compute discrete variables. Some variables are discrete others are not. Simple as that. You do not compute people - you can compute their average height, or mass, or shoe size, etc. But that is computing those characteristics, you are not computing people. In the same way, you can compute the mean, variance, standard error, skewness, kurtosis of discrete variables, or the probability of outcomes, but none of that is computing the discrete variable.You do not compute discrete variables. Some variables are discrete others are not. Simple as that. You do not compute people - you can compute their average height, or mass, or shoe size, etc. But that is computing those characteristics, you are not computing people. In the same way, you can compute the mean, variance, standard error, skewness, kurtosis of discrete variables, or the probability of outcomes, but none of that is computing the discrete variable.You do not compute discrete variables. Some variables are discrete others are not. Simple as that. You do not compute people - you can compute their average height, or mass, or shoe size, etc. But that is computing those characteristics, you are not computing people. In the same way, you can compute the mean, variance, standard error, skewness, kurtosis of discrete variables, or the probability of outcomes, but none of that is computing the discrete variable.


How can you tell if a data set is symmetric?

A data set is considered symmetric if its distribution is uniform on both sides of a central point, typically the mean or median. You can visually assess symmetry by creating a histogram or box plot; if the left and right sides mirror each other, the data is symmetric. Additionally, you can examine numerical measures, such as skewness; a skewness value close to zero indicates symmetry.


What are some advantages of using a histogram over a polygon?

Histograms provide a clear visual representation of data distribution by displaying the frequency of data points within specific intervals, making it easier to identify patterns and trends. They effectively illustrate the shape of the data distribution, such as skewness and modality. In contrast, polygons can be less intuitive for quickly assessing the frequency of data, as they require connecting midpoints of intervals, which can obscure individual frequency counts. Additionally, histograms handle large data sets more effectively by aggregating data into bins, simplifying the visualization.