62 hosts.
The maximum number of host bits that can be borrowed from a class A address is 22 (technically you could borrow 23 but the resulting network would be useless). A class A address uses 8 bits for its network address and 24 bits for its host addresses. Class A uses a subnet mask of 255.0.0.0 You can only borrow 22 bits (instead of 24) because a valid network requires 4 addresses: A network address, two host addresses and a broadcast address. These networks would result in 30 bits used for the network address and 2 bits used for the host addresses. These networks use a subnet mask of 255.255.255.252
with the default subnet mask, the number of clients in a class A network is: 16,777,214
A class A network has more IP addresses - you can connect more hosts on it.A class C network has 256 IP addresses (of which you can use 254), a class B network about 65,000, a class A network about 17 million.More specifically, a Class A network can have 16,777,214 usable host addresses per network whereas a Class B network can have 65,6534 usable host addresses per network.Another advantage is the ridiculous amounts of subnetting you can do. For example, in a Class C network, you can't borrow the same number of bits as you can with a Class A because you only have the last octet to work with for the host portion. With a Class A network, the last three octets are the entire host portion, so you have 24 bits to work with for subnetting (technically 23 since you can't subnet down through all available bits and have no bits left for hosts =p). Due to the amount of subnets you can have and the 16+ million hosts you can potentially have on the same network, Class A networks are reserved for super big applications (ISPs and gigantic companies).
This address is for a class B network (128 - 191)
254
Since this is a Class C address, the default network mask is 255.255.255.0.Since this is a Class C address, the default network mask is 255.255.255.0.Since this is a Class C address, the default network mask is 255.255.255.0.Since this is a Class C address, the default network mask is 255.255.255.0.
Class B network
Ok good question To subnet any network requires borrowing host addresses The 255.255.192.0 regardless of class says host addresses start at CIDR (Classless Inter Domain Routing Protocol) /18. So if we borrow every available host address space then we have 2^14 = 16,384 possible subnet addresses available, NOT. In reality we have 11111111.11111111.11000000.00000000 or a /18 network. Every network / subnet requires two special reserved addresses. The network or zero address, and the last address in the range which will be assigned as the broadcast address. So we can't borrow all of the bits for sub netting. If we only leave one we will only have two addresses for the hosts, this won't work because we need to reserve two. We have to leave two so we will have 2^2 = 4. We can then give each subnet a network address and a broadcast address and still have 2 usable hosts' addresses. If we do this we only have 2^12 subnets = 4096. Each subnet will only have two usable host addresses and two reserved addresses. See the math confirms that 4096 * 4 = 16384 which is the total number of addresses in the address space we started with.
Class C
The IP address is of class C.
Same as subnetting any other class, or a classless network. From the bits originally reserved for the host (16 bits, in the case of a class B address), you "borrow" some bits, that is, you use them to specify the subnet. The remaining bits specify an individual host within a subnet.
The number of possible IP address decreases as one steps down from Class A to Class C IP addresses because the availability of usable hosts. There is a decrease in the number of usable hosts from Class A to Class C IP addresses.