No, Public key cryptography is safer than Private key Cryptography. In public key cryptography only only one part of key is visible to others.
"Evaluating cryptography is difficult since without 'breaking' the encryption its hard to say whether one encryption is better or not. Pretty Good Encryption (PGP) is asymmetric, that is the encryption and decryption keys are different which may give it an edge on symmetric encryption."
"Regular banking is safer than private banking. In most cases, regular banking agencies will provide as much assistance as they can provide in the case of disaster."
From another user: Symmetric cryptography uses the same secret (private) key to encrypt and decrypt its data whereas asymmetric uses both a public and private key. Symmetric requires that the secret key be known by the party encrypting the data and the party decrypting the data. Asymmetric allows for distribution of your public key to anyone with which they can encrypt the data they want to send securely and then it can only be decoded by the person having the private key. This eliminates the need of having to give someone the secret key (as with symmetric encryption) and risk having it compromised. The issue with asymmetric is that it is about 1000 times slower than symmetric encryption which makes it impractical when trying to encrypt large amounts of data. Also to get the same security strength as symmetric, asymmetric must use strong a stronger key than symmetric.
It depends on how you apply the term "secret key encryption". In one sense "Secret key encryption" refers to using symmetric keys - both parties have the key and must keep it secret in order to protect the confidentiality of the communication. Usually the process that was used to encrypt the original message can be decrypted by repeating the encryption process with the original secret key. This should provide for confidentiality, non-repudiation, and validation since only the holders of the shared secret key should be able to successfully encrypt and decrypt the messages. In contrast to the symmetric key encryption, Public Key encryption uses two keys in the encryption/decryption process. Anything encrypted with one key can be decrypted with the other key. The "public key" is published for everyone to access. The "private key" is kept by the owner and not made available to the world. The encryption of the original message using one key can be "undone" only by using the other key. Using the public key on a message already encrypted with the public key only results in an even more jumbled and unintelligible mess. The end result is that is someone encrypts a message with their private key, only their public key can be used to decrypt it, thus verifying the source of the message. Any message encrypted using the public key can only be decrypted with the private key, thus providing confidentiality. If two users want to use asymmetric encryption to communicate securely, they can do it this way: Alice encrypts a message to Bob using Bob's public key. Only Bob can decrypt it and read it (using his private key). He can then send a return email to Alice using Alice's public key that only Alice can decrypt and read (using her own private key). If they wish, they can use this method to agree upon and exchange a shared symmetric key than can be used for further secure communications. Several automatic secure protocols use exactly this method or a variation of it. The alternate meaning is to make "secret key" synonymous with the "private key" of asymmetric encryption. In this case there is really no difference between secret key and public key encryption except for which key of the public/private key pair is being used and who can read it.
Public key encryption refers to a type of cypher or code architecture known as public key cryptography that utilizes two keys, or a key pair), to encrypt and decrypt data. One of the two keys is a public key, which anyone can use to encrypt a message for the owner of that key. The encrypted message is sent and the recipient uses his or her private key to decrypt it. This is the basis of public and private key encryption.
Depends on what kind of private school it is.
Let's put it this way, the public sector is under WAY more scrutiny than the private sector is.
It depends on the situation and it depends on the country. In the United States, more people pick private colleges than public colleges, unless they need the discounts that come with public school. In Europe, public colleges are far more commonly chosen than private colleges.
The most common hybrid system is based on the Diffie-Hellman key exchange, which is a method for exchanging private keys using public key encryption. Diffie-Hellman key exchange uses asymmetric encryption to exchange session keys. These are limited-use symmetric keys for temporary communications; they allow two entities to conduct quick, efficient, secure communications based on symmetric encryption, which is more efficient than asymmetric encryption for sending messages. Diffie_Hellman provides the foundation for subsequent developments in public key encryption. It protects data from exposure to third parties, which is sometimes a problem when keys are exchanged out-of-land.
Yes it is because on instagram you can put your photos on private and choose who looks at your photos
facebook is better than myspace because it more safer and private. but on facebook you dont get to change your background and stuff.
Yes, chip cards are generally considered safer than traditional magnetic stripe cards because they offer enhanced security features such as encryption and dynamic authentication, making it harder for fraudsters to steal and use card information.