The formula for centrifugal force is mv2/r, all measured in SI units (kilograms, metres per second, metres). Since centripetal force is the opposite, it logically follows that it also depends on these three variables.
The factors affecting the centripetal force of a whirling body include the mass of the body, the velocity at which it is moving, and the radius of the circular path it is following. Additionally, the centripetal force is directly proportional to the square of the velocity and inversely proportional to the radius of the circular path.
The formula for centrifugal force is mv2/r, all measured in SI units (kilograms, metres per second, metres). Since centripetal force is the opposite, it logically follows that it also depends on these three variables.
Centripetal force is a force that is required to exist to have a circular motion. Thus the centripetal force can be any force that is able to accomplish this task. Examples of centripetal forces are the gravitational force, the electromagnetic force, the frictional force, or the constraint forces. The centripetal force depends on the system that is involved in be in a spin of a rigid body, or of a planetary motion, etc. Each particular system that requires a rotation or a spin needs to have a corresponding centripetal force.
The symbol for centripetal force is "Fc".
The centripetal force is equal to the gravitational force when a particular body is in a circle. For a body that is in an orbit, the gravitational force is equivalent to the centripetal force.
Centripetal force is the force that keeps an object moving in a circular path. Centripetal force always acts in the direction of the center of the circle. Centripetal force is a real physical force that pulls objects radially inward. Centripetal force is necessary to maintain circular motion.
That is called a centripetal force.
Centripetal acceleration is proportional to the square of the speed (a = v2/r). Therefore, according to Newton's Second Law, centripetal force is also proportional to the square of the speed.
If the speed of the centripetal force is doubled, the required centripetal force also doubles to keep the object moving in a circular path at that speed. The centripetal force needed is directly proportional to the square of the speed, so doubling the speed results in a quadrupling of the centripetal force required.
Centripetal force always acts inward towards the center of rotation. Centripetal force is required to keep an object moving in a circular path. Centripetal force is a real physical force acting on an object in circular motion. Centripetal force can be provided by tension, friction, or gravitational attraction.
The centripetal force
A centripetal force is, by definition, a force that makes a body follow a curved path. So, yes, a centripetal force causes rotation about a point in space.