According to Boyle's Law, when the volume of a gas is doubled with no change in Kelvin temperature, the pressure of the gas will be halved. This is because pressure and volume are inversely proportional in a gas at constant temperature.
If the volume is doubled and the number of molecules is doubled while the temperature is held constant, the pressure of the gas sample will remain the same. This is because both the volume and the number of molecules increased by the same factor, resulting in no net change in pressure according to the ideal gas law.
At a constant volume the pressure increase.
If the pressure is doubled according to the ideal gas equation (PV = nRT), and the other variables remain constant, then the volume would be halved. This is because pressure and volume are inversely proportional when the other variables are constant in an ideal gas.
The pressure of a gas would be reduced by half if the volume of the container doubled, provided that no other change occurred. Pressure and volume are inversely proportional. The relationship between the two is known as Boyle's law. In brief, the volume of a gas changes inversely with the pressure of the gas if the temperature and quantity of gas remain constant.
The volume is doubled.
The volume doubles
If you let it expand until the new pressure is the same as the original pressure, then the volume will be doubled. But if you want, you could restrict it to stay in the same volume as before. It could do that, but the pressure would double.
Charles Law (also known as the law of volumes) describes how gases tend to expand or contract with temperature changes.If the temperature changes and the gas molecules and pressure remains the same then the volume will increase or decrease at the same rate that the temperature changes.Since the temperature doubled the volume will double to 6L.
If the pressure is doubled and the temperature is reduced to half, according to Boyle’s Law, the volume of the gas will decrease by half. This is because pressure and volume are inversely proportional when temperature is constant.
The ideal Gas Law states the following: pV=nRT p=pressure [pa] V=volume [m³] n=number of moles R=constant T=temperature [K] So, if you multiply the number of moles by 2, and all the other variables are not changed, your volume will also be multiplied by 2.
the volume doubles