paritybyte's are not very common, but a paritybyte (PB) is the measurement after Terabyte (TB) 1000 TB = 1 PB, so this would be for very large servers.
Nine.
Parity
Parity
Eight
ECC stands for "error correcting code". It is a way to check for accuracy by adding one bit of redundant data (or parity data) to the end of each byte. As an example, when the digits of a byte total an odd number, the parity bit will be a zero. When it is even, it will be a one. If the parity bits do not match their respective bytes, the data is known to be corrupted.
It's called a parity bit.
The parity flag is typically associated with 8-bit data because it is designed to provide error detection for single-byte data. In an 8-bit architecture, the parity bit is used to indicate whether the number of 1s in the byte is even or odd, thus helping to detect errors in data transmission or storage. This alignment with the 8-bit data structure allows the parity flag to efficiently signal the integrity of the data being processed.
Parity errors in memory are detected using a simple error-checking mechanism that involves an additional bit known as the parity bit. This bit is added to a group of bits (like a byte) to ensure that the total number of 1s is either even (even parity) or odd (odd parity). When data is read from memory, the system recalculates the parity and compares it to the stored parity bit; if there's a mismatch, a parity error is flagged, indicating that the data may be corrupted.
True
That's called a "parity violation", which indicates a bit error in the byte. That's the whole purpose of parity ... detecting bit errors, although in order to do it, you have to significantly increase the data load by adding an extra bit to every 7 or 8 bits in the end-user's business traffic.
for example: unsigned char attach (unsigned char byte, unsigned char bit) { unsigned char mybyte; mybyte = byte&0x7f; if (bit) mybyte |= 0x80; return mybyte; }
A ninth bit is added to each byte, and its value is set so that the number of 'ones' in the nine bits is always even. That's "even parity".