answersLogoWhite

0

What else can I help you with?

Related Questions

When system does work what happens to it's internal energy?

When a system does work on its surroundings, its internal energy deceases. This is because some of the internal energy of the system is being used to perform the work.


What happens to internal energy when mechanical work is done?

When mechanical work is done, the internal energy of a system can change. If work is done on the system, the internal energy increases. Conversely, if work is done by the system, the internal energy decreases. This change in internal energy is governed by the first law of thermodynamics.


What happens to the internal energy of a system when work is done on it?

When work is done on a system, its internal energy increases. This is because the work done transfers energy to the system, raising the energy of its particles and increasing their kinetic and potential energies.


When mechanical work is done on a system there is an increase in what?

When mechanical work is done on a system, there is an increase in the system's internal energy. This increase in internal energy is due to the transfer of energy from the mechanical work applied to the system.


How are heat work and internal energy related?

Heat, work, and internal energy are all forms of energy transfer. Heat is energy transfer due to a temperature difference, work is energy transfer due to a force acting through a distance, and internal energy is the total energy of a system. The change in internal energy of a system is the sum of the heat added to the system and the work done on the system.


If work is don adiabatically on a system will the internal energy increase or decrease?

If work is done adiabatically on a system, the internal energy will increase. This is because adiabatic processes do not involve the exchange of heat with the surroundings, so any work done on the system will directly contribute to an increase in its internal energy.


What is the relationship between heat added to a system and the internal energy and external work done by the system-?

When heat is added to or is absorbed by a system, its internal energy increases. The amount of external work a system can do essentially refers to the amount of energy it can transfer to something else. So when internal energy increases, so does the external work done by the system.


What happens to the temperature when work is done on the system by pushing it?

When work is done on a system by pushing it, the internal energy of the system increases, leading to an increase in temperature. The work done increases the kinetic energy of the particles in the system, causing them to move faster and leading to an increase in temperature.


What is the change in the internal energy of a system that does 100 joules?

The change in internal energy of a system that does 100 joules of work depends on the heat exchange as well. In general, the change in internal energy is equal to the amount of heat added to the system minus the work done by the system.


A system absorbs 640J heat and does work of 260J the change in internal energy of the system will be?

the system has been given internal energy of 640j and the work system does on surroundings is 260j. therefore by first law of thermodynamics the internal energy of system increases by (640-260=380)j.


What is the relationship between the work done in an adiabatic process and the change in internal energy of a system?

In an adiabatic process, the work done is equal to the change in internal energy of a system.


When a system does work and no heat is added to the system its temperature?

remains constant From Rafaelrz. When a simple closed system does work and no heat is added, the temperature of the system will drop. This is because the work is done at the expense of his internal energy, which is thermal energy.