answersLogoWhite

0

In order to double the voltage across a capacitor,

you need to stuff twice as much charge into it.

User Avatar

Wiki User

11y ago

What else can I help you with?

Related Questions

How do you charge a capacitor?

You charge a capacitor by placing DC voltage across its terminal leads. Make sure when using a polarized capacitor to place positive voltage across the positive lead (the longer lead) and negative voltage across the negative lead. Also make sure that the voltage you charge the capacitor to doesn't exceeds its voltage rating.


What is the relationship between the voltage drop across capacitors and the amount of charge stored in them?

The voltage drop across a capacitor is directly proportional to the amount of charge stored in it. This means that as the charge stored in a capacitor increases, the voltage drop across it also increases.


How can one determine the process of finding the charge on a capacitor?

To determine the charge on a capacitor, you can use the formula Q CV, where Q is the charge, C is the capacitance of the capacitor, and V is the voltage across the capacitor. By measuring the capacitance and voltage, you can calculate the charge on the capacitor using this formula.


What is the formula for calculating the charge stored in a capacitor?

The formula for calculating the charge stored in a capacitor is Q CV, where Q represents the charge stored in the capacitor, C is the capacitance of the capacitor, and V is the voltage across the capacitor.


Will voltage drop across a capacitor?

basically a capacitor will charge to the input DC level however it will mathematically never happen since capacitors charge at a certain rate the voltage drop across a capacitor will follow the R C time constant or 63% of the applied voltage for a unit time.AnswerIn the case of an a.c. supply, yes, there will be a voltage drop across a capacitor. In the case of an 'ideal' capacitor, this will be the product of the load current and the capacitive reactance of the capacitor.


How can we calculate the charge on each capacitor in the circuit?

To calculate the charge on each capacitor in the circuit, you can use the formula Q CV, where Q is the charge, C is the capacitance of the capacitor, and V is the voltage across the capacitor. Simply plug in the values for capacitance and voltage for each capacitor in the circuit to find the charge on each one.


What is the method to find the charge on each capacitor in a circuit?

To find the charge on each capacitor in a circuit, you can use the formula Q CV, where Q is the charge, C is the capacitance of the capacitor, and V is the voltage across the capacitor.


What is the formula to calculate the maximum charge on a capacitor in an electrical circuit?

The formula to calculate the maximum charge on a capacitor in an electrical circuit is Q CV, where Q represents the charge on the capacitor, C is the capacitance of the capacitor, and V is the voltage across the capacitor.


What does a capacitor charge graph illustrate about the behavior of a capacitor in an electrical circuit?

A capacitor charge graph shows how the voltage across a capacitor changes over time when it is connected in an electrical circuit. It illustrates that initially, the voltage across the capacitor rises quickly as it charges up, but eventually levels off as the capacitor becomes fully charged. This graph helps to understand the time it takes for a capacitor to charge and how it behaves in a circuit.


What is the total capacitance of this arrangement the charge of each capacitor and the voltage across the last capacitor and the energy stored in it?

(a) what is the total capacitance of this arrangement (B) the charge stored on each capacitor (C) the voltage across the 50 micro farad capacitor and the energy stored in it. 20v and 20+30+50 micro farad


Does voltage matter when charging a capacitor?

Yes, voltage matters when charging a capacitor. Capacitor charge rate is proportional to current and inversely proportional to capacitance. dv/dt = i/c So, voltage matters in terms of charge rate, if you are simply using a resistor to limit the current flow, because a larger voltage will attempt to charge faster, and sometimes there is a limit on the current through a capacitor. There is also a limit on voltage across a capacitor, so a larger voltage could potentially damage the capacitor.


Do capacitors in series have the same charge?

No, capacitors in series do not have the same charge. The charge on each capacitor depends on its capacitance and the voltage across it.