In a standard galvanic cell using zinc and aluminum, the zinc metal will act as the anode and the aluminum metal will act as the cathode. Zinc will undergo oxidation at the anode, releasing electrons which flow through the external circuit to the cathode where aluminum will undergo reduction. This flow of electrons creates an electrical current.
The standard cell notation for a galvanic cell made with zinc and aluminum is represented as: Zn(s) | Zn²⁺(aq) || Al³⁺(aq) | Al(s). In this notation, the anode (zinc) is listed on the left, followed by its ion in solution, then the double vertical line representing the salt bridge, and finally the cathode (aluminum) and its ion in solution. This format clearly indicates the direction of electron flow from zinc to aluminum.
0.92 V. apex
0.92V
0.92V
The standard cell notation for a galvanic cell involving aluminum and nickel can be represented as: Al | Al³⁺ (aq) || Ni²⁺ (aq) | Ni. In this notation, aluminum (Al) serves as the anode where oxidation occurs, while nickel (Ni) acts as the cathode where reduction takes place. The double vertical line (||) indicates the salt bridge separating the two half-cells.
Two electrodes in electrolyte solutions
0.92V
Zn(s)/Zn2+(aq)//Au+(aq)/Au(s)
Al | Al^3+ Zn^2+ | Zn
Al(s) | Al3+(aq) Ni2+(aq) | Ni(s)
the gold electrode