The student can decrease the wavelength of the wave by increasing the frequency of the wave. This is because wavelength and frequency are inversely proportional in a wave - increasing frequency decreases wavelength and vice versa. Therefore, to decrease the wavelength, the student should focus on increasing the frequency of the wave.
You can decrease the wavelength of a transverse wave by increasing the frequency of the wave. This is because wavelength and frequency are inversely proportional in a wave, so increasing the frequency will result in a shorter wavelength.
Increasing the wavelength by 50 percent will decrease the frequency of the wave by one-third. This is because frequency and wavelength are inversely proportional - as wavelength increases, frequency decreases, and vice versa.
To decrease the value of wavelength, you can increase the frequency of the wave. This is because the wavelength and frequency of a wave are inversely related according to the wave equation: wavelength = speed of light / frequency. So, by increasing the frequency, you will effectively decrease the wavelength.
Increasing a wave's wavelength will most certainly decrease its frequency. See Physics.
Generally, dielectric breakdown strength decreases with increasing humidity. In air, exact relationships between dielectric strength and humidity are hard to derive, due to the numerous other variables compounding the relationships (e.g. electrode size and shape, air temperature and pressure). Sources: http://www.scienceforums.net/topic/37206-dielectric-strength-of-air/ http://en.wikipedia.org/wiki/Dielectric_strength
Increasing the wavelength of an electromagnetic wave decreases its frequency. This is because wavelength and frequency are inversely related in electromagnetic waves, as described by the equation λν = c, where λ is wavelength, ν is frequency, and c is the speed of light.
If you're talking about an electric motor, increasing the frequency will increase the speed of rotation of the motor, and decreasing the frequency will decrease the speed of rotation of the motor. The other way of controlling a motor is to control the current; increasing the current increases speed, decreasing current decreases speed.
If the dielectric constant of the medium between the charges increases, the force between the charges decreases. This is because increasing the dielectric constant reduces the electric field strength between the charges, leading to a decrease in the force between them.
Increasing energy of a wave will increase its frequency and decrease its wavelength. This is because energy is directly proportional to frequency (E = hf) and inversely proportional to wavelength (E = hc/λ), where h is Planck's constant and c is the speed of light.
Generally, increased moisture levels will lower breakdown strength, especially if the dielectric readily absorbs water. Increasing temperature generally decreases breakdown strength of solid dielectrics. The dielectric strength of some materials may increase with temperature within limited temperature ranges. However, dielectric strength eventually begins to decrease at higher temperatures.
Increasing the wavelength of an electromagnetic wave will decrease its frequency and energy. This change can affect how the wave interacts with matter, such as increased penetration through obstacles or reduced absorption by certain materials.