I would spend my money on getting a decent third-grade spelling and grammar book. Improve your present life and then see about the past ones.
As of October 2023, the Director General of the Indian Coast Guard is Vice Admiral K. N. P. K. A. M. S. S. A. N. N. K. S. M. N. T. A. M. N. B. N. N. K. A. S. M. N. T. A. M. N. S. I. K. N. K. M. S. N. K. A. N. T. A. N. K. A. N. K. A. N. S. T. K. M. N. K. M. N. T. A. M. N. K. A. M. N. N. N. K. A. N. N. K. S. N. K. A. N. K. A. N. S. T. K. A. N. N. K. A. N. K. A. N. K. M. N. K. M. N. K. A. N. K. A. N. K. A. N. T. A. N. K. K. M. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N. K. A. N.
Jj
Lost N Found - JJ Lin album - was created in 2011.
i sgggbbcbb hhhjjjwhhhfbb uhhchhjdjjsuijh hhhwshhhh hhikjsdjh hjjuueuuuwksjd fhhfh jkjfjjjfjjdjjjjjhdjj kkksiikf skkfkk kkdkkkfkk kkkkfkksk kkfkfkkkkkcm kkkakkfkskkkfkkfk sjjfhfhjnsnnnsnnfjsjfmslkdmakd,jmf jj fkjfjkf jj j igbjjjbjjjjjjfkkcjvm o nikdififfffsfn jsfsf nhjjdjjjdjdjdjjjdgjfgjghn njbjmmmmbmdm jkkkdmmgnmn nndgm nmn nn n nn nn n * olekkkdlllxp; dokkdiixid idoodoffkfmml.g.gllglglegldlgbm k ,gkdjjkmm k gkkdkg
for (n=1; n<1000; ++n) { for (sum=0, k=1; k<=n/2; ++k) if (n%k==0) sum += k; if (sum==n) printf ("%d\n", n); }
k = f(n) = 7n
#include<iostream.h> #include<conio.h> void main() { clrscr(); int i,k,a[10],c[10],n,l; cout<<"Enter the no. of elements\t"; cin>>n; cout<<"\nEnter the sorted elments for optimal merge pattern"; for(i=0;i<n;i++) { cout<<"\t"; cin>>a[i]; } i=0;k=0; c[k]=a[i]+a[i+1]; i=2; while(i<n) { k++; if((c[k-1]+a[i])<=(a[i]+a[i+1])) { c[k]=c[k-1]+a[i]; } else { c[k]=a[i]+a[i+1]; i=i+2; while(i<n) { k++; if((c[k-1]+a[i])<=(c[k-2]+a[i])) { c[k]=c[k-1]+a[i]; } else { c[k]=c[k-2]+a[i]; }i++; } }i++; } k++; c[k]=c[k-1]+c[k-2]; cout<<"\n\nThe optimal sum are as follows......\n\n"; for(k=0;k<n-1;k++) { cout<<c[k]<<"\t"; } l=0; for(k=0;k<n-1;k++) { l=l+c[k]; } cout<<"\n\n The external path length is ......"<<l; getch(); }
n(n+1)/2 You can see this from the following: Let x=1+2+3+...+n This is the same as x=n+(n-1)+...+1 x=1+2+3+...+n x=n+(n-1)+...+1 If you add the corresponding terms on the right-hand side of the two equations together, they each equal n+1 (e.g., 1+n=n+1, 2+n-1=n+1, ..., n+1=n+1). There are n such terms. So adding the each of the left-hand sides and right-hand sides of the two equations, we get: x+x=(n+1)+(n+1)+...+(n+1) [with n (n+1) terms on the right-hand side 2x=n*(n+1) x=n*(n+1)/2 A more formal proof by induction is also possible: (1) The formula works for n=1 because 1=1*2/2. (2) Assume that it works for an integer k. (3) Now show that given the assumption that it works for k, it must also work for k+1. By assmuption, 1+2+3+...+k=k(k+1)/2. Adding k+1 to each side, we get: 1+2+3+...+k+(k=1)=k(k+1)/2+(k+1)=k(k+1)/2+2(k+1)/2=(k(k+1)+2(k+1))/2=((k+2)(k+1))/2=(((k+1)+1)(k+1))/2=((k+1)((k+1)+1)/2
// // THIS IS A MACH SIMPLER SOLUTION: // void Diamond(int n) { for (int i=0;i<=2*n;i++,printf("\n")) for (int j=0;j<=2*n;j++) (abs(i-n)+abs(j-n)<=n ? printf("*") : printf(" ")); } //============================================= #include<stdio.h> main() { int i,j,k,n,a,b,c,x; printf("enter the # of rows of graphical output"); scanf("%d",&n); /* UPPER HALF OF KITE */ for(i=1;i<=n;i++) { printf("\t"); for (k=1;k<=(n-i);k++) { printf(" "); } for(j=0;j<i;j++) { printf("*"); printf(" "); } for(k=1;k<=(n-i-1);k++) { printf(" "); } printf("\n"); } /* LOWER PART OF KITE */ for(i=(n-1);i>0;i--) { printf("\t"); for (k=(n-i);k>0;k--) { printf(" "); } for(j=i;j>0;j--) { printf("*"); printf(" "); } for(k=(n-i-1);k>0;k--) { printf(" "); } printf("\n"); } getch(); }
You need a formula for this. If the probability (in one toss) of getting head is "p", then the probability of getting exactly k heads out of n tosses is: (n,k) p^k (1-p)^(n-k) where (n,k) denotes the number of combinations of k elements among n. You should also know that (n,k) = n! / (( n-k)! k! ) so here, with n=8, k=6, and p=.5 you have (n,k) = 8*7 / 2 = 28 and your probability is : 28 * 1/2^6 * 1/2^2 = 28 / 256 = 7 / 64
/*PROGRAM TO IMPLEMENT GAUSS-jordan method.#include#define MX 20main(){float a[MX] [MX+1],m,p;int i,j,k,n;puts("\n how many equations?:");scanf("%d",&n);for(i=0;i
K. N. Panikkar was born in 1936.