No. Without a 3rd peice of data from another station, there will always be 2 different possible locations of the epicenter. You must have 3 seismographs to collect the data.
Geologists locate the epicenter of an earthquake by analyzing the arrival times of seismic waves from the earthquake recorded by seismographs at different locations. By triangulating the arrival times from at least three stations, they can pinpoint the epicenter where the waves intersect.
yes it can
Seismologists use the data from triangulated seismographs to locate an earthquake's epicenter. The difference in time between the arrival of p and s waves at a seismometer tells the distance to the epicenter of an earthquake. To get the exact location, scientists must collect data from at least three seismometers. The point where all three circles is the epicenter of the earthquake. +++ The Epicentre is generally obvious: it is the point of maximum disturbance on the surface. The centre of the actual slip is the Focus, and this has to be calculated from seismograph data by triangulating from wave velocities.
To locate the epicenter of an earthquake, scientists use data from seismographs to determine the difference in arrival times of seismic waves at different locations. By triangulating this data from at least three seismograph stations, they can pinpoint the epicenter where the seismic waves originated.
To locate the epicenter of an earthquake, scientists use data from seismographs to determine the difference in arrival times of seismic waves at different locations. By triangulating this data from at least three different seismograph stations, they can pinpoint the epicenter where the seismic waves originated.
Geologists use circles to find the epicenter of an earthquake.
Geologists locate the epicenter of an earthquake by analyzing the arrival times of seismic waves from the earthquake recorded by seismographs at different locations. By triangulating the arrival times from at least three stations, they can pinpoint the epicenter where the waves intersect.
The minimum number of seismographs needed to locate an epicenter of an earthquake is 3.
yes it can
Seismologists use the data from triangulated seismographs to locate an earthquake's epicenter. The difference in time between the arrival of p and s waves at a seismometer tells the distance to the epicenter of an earthquake. To get the exact location, scientists must collect data from at least three seismometers. The point where all three circles is the epicenter of the earthquake. +++ The Epicentre is generally obvious: it is the point of maximum disturbance on the surface. The centre of the actual slip is the Focus, and this has to be calculated from seismograph data by triangulating from wave velocities.
Three seismographs stations are needed to pinpoint the location of the epicentre of an earthquake.
Seismologists use the data from triangulated seismographs to locate an earthquake's epicenter. The difference in time between the arrival of p and s waves at a seismometer tells the distance to the epicenter of an earthquake. To get the exact location, scientists must collect data from at least three seismometers. The point where all three circles is the epicenter of the earthquake. +++ The Epicentre is generally obvious: it is the point of maximum disturbance on the surface. The centre of the actual slip is the Focus, and this has to be calculated from seismograph data by triangulating from wave velocities.
triangulating its loction
An earthquakes epicenter is the point on the surface directly above the focus
To locate the epicenter of an earthquake, scientists use data from seismographs to determine the difference in arrival times of seismic waves at different locations. By triangulating this data from at least three seismograph stations, they can pinpoint the epicenter where the seismic waves originated.
To locate the epicenter of an earthquake, scientists use data from seismographs to determine the difference in arrival times of seismic waves at different locations. By triangulating this data from at least three different seismograph stations, they can pinpoint the epicenter where the seismic waves originated.
This job would normally be undertaken by a type of geophysicist known as a seismologist rather than a geologist. For information on how seismologists locate seismic waves, see the related question.