Benzene, C6H6 is a non-polar simple covalent molecule with instantaneous induced dipole-Induced dipole interactions (Dispersion forces, Van der waal's forces of attraction). Water on the other hand is a polar simple covalent molecule with hydrogen bonding.
Water has hydrogen bonding because it's hydrogen atoms are attached to a highly electronegative atom (Oxygen) which pulls the bonding electrons so close to itself that the valence shell of the hydrogen atoms appear to be empty and ready to accept a lone pair of electrons from an oxygen atom of another water molecule. (In this case oxygen atoms have 2 lone pairs to contribute to hydrogen bonding.
Hydrogen bonding is far more stronger than dispersion forces and thus requires more energy to break. As such, water has a higher boiling point (100 0C) than benzene (80.1 0C) because more energy is required to break the forces of attraction holding the molecules of water together.
Benzene has a lower boiling point than toluene because it has a symmetric structure that experiences weaker van der Waals forces, making it easier for benzene molecules to separate and vaporize. The higher melting point of benzene compared to toluene is due to the presence of delocalized electron cloud in benzene, which results in stronger intermolecular interactions (π-π interactions) between benzene molecules in the solid state.
Fractional distillation is commonly used to separate benzene from a mixture of benzene and methyl benzene. Benzene has a lower boiling point compared to methyl benzene, allowing it to be separated by distillation based on the difference in their boiling points.
To determine the boiling-point elevation of the solution, we need to use the formula: ΔTb = iKbm, where ΔTb is the boiling point elevation, i is the van't Hoff factor (for napthalene, i = 1 because it doesn't dissociate), Kb is the ebullioscopic constant of the solvent (benzene), and m is the molality of the solution (2.47 mol/kg). Plug in the values and solve for ΔTb. Add this value to the boiling point of benzene (80.1°C) to find the boiling point of the solution.
The melting point of Benzene is 5.5 and its Boiling point is 80.1. So, Below 5.5 , Benzene is a solid. Between 5.5 and 80.1 Its a liquid. After 80.1 Benzene is a Gas..
Alcohol thermometers typically have a lower maximum temperature range compared to mercury thermometers, making them unsuitable for measuring the high boiling point of water. Alcohol thermometers may not accurately measure temperatures above their boiling point, which is lower than water's boiling point.
Benzene has a lower boiling point than toluene because it has a symmetric structure that experiences weaker van der Waals forces, making it easier for benzene molecules to separate and vaporize. The higher melting point of benzene compared to toluene is due to the presence of delocalized electron cloud in benzene, which results in stronger intermolecular interactions (π-π interactions) between benzene molecules in the solid state.
Fractional distillation is commonly used to separate benzene from a mixture of benzene and methyl benzene. Benzene has a lower boiling point compared to methyl benzene, allowing it to be separated by distillation based on the difference in their boiling points.
Kerosene and benzene can be separated by fractional distillation. Since benzene has a lower boiling point than kerosene, the mixture can be heated to vaporize the benzene, which is then collected as a separate fraction.
Ethyl ether is more volatile than benzene. Ethyl ether has a lower boiling point and vapor pressure, making it easier for it to evaporate rapidly. Benzene is less volatile compared to ethyl ether due to its higher boiling point and lower vapor pressure.
Butane has a lower boiling point than water. Butane boils at -1°C (30.2°F) while water boils at 100°C (212°F) at standard atmospheric pressure.
The boiling point of a mixture of benzene and water will be higher than the boiling point of either component alone, due to the presence of both compounds. The exact boiling point would depend on the concentrations of benzene and water in the mixture according to Raoult's law. If benzene and water form an ideal solution, the boiling point of the mixture would lie between 80.1°C and 100°C.
To determine the boiling-point elevation of the solution, we need to use the formula: ΔTb = iKbm, where ΔTb is the boiling point elevation, i is the van't Hoff factor (for napthalene, i = 1 because it doesn't dissociate), Kb is the ebullioscopic constant of the solvent (benzene), and m is the molality of the solution (2.47 mol/kg). Plug in the values and solve for ΔTb. Add this value to the boiling point of benzene (80.1°C) to find the boiling point of the solution.
Boiling Point (760 mm Hg); 80.1 deg. C (176 deg. F)
The melting point of Benzene is 5.5 and its Boiling point is 80.1. So, Below 5.5 , Benzene is a solid. Between 5.5 and 80.1 Its a liquid. After 80.1 Benzene is a Gas..
ACETONE IS. BENEZE is quiet stability as a result of resonance
It depends what chemical or compound you are comparing the boiling point to. Ethanol has an atmospheric pressure boiling point of 78.1 °C (172.6 °F). This is slightly lower than the boiling point of water at the same pressure, much lower than the boiling point of iron, much higher than the boiling point of bromine.
The boiling point of methanol is lower than the boiling point of ethanol.