"just as an atomic orbital belongs to a particular atom, a molecular orbital belongs to a molecule as a whole" -prentice hall chemistry
In the Lewis structure model, the bond between hydrogen atoms is represented as a single covalent bond, where one pair of electrons is shared between the two hydrogen atoms. In the molecular orbital model, the bond is shown as the overlap of atomic orbitals to create a bonding molecular orbital that is lower in energy than the individual atomic orbitals.
If you are going by the electron configuration of nitrogen then the unpaired electrons in the 2p shell would indicate that it is paramagnetic. However experiments show that it is diamagnetic. You must remember that nitrogen is a diatomic element and as such is found as N2. The molecular orbital theory explains how there are no unpaired electrons in the bonds between the two N atoms. The 1s and 2s molecular orbitals are completely filled and all of the bonding 2p orbitals are also filled. There are no electrons in the any of the 2p anti-bonding orbitals. Seeing a molecular orbital diagram for N2 will clarify what i mean.
The molecular orbital structure of carbon dioxide consists of three molecular orbitals: one sigma bonding (σ), one sigma antibonding (σ), and one pi antibonding (π). The σ orbital is formed from the overlap of the sp hybrid orbitals on carbon and oxygen atoms, while the π* orbital is formed from the sideways overlap of the p orbitals on the oxygen atoms.
gram molecular weight of C6H8O7=(atomic weigth of carbon X 6)+(atomic weigth of hydrogen X 8+(atomic weigth of oxygen X 7) grams
Atomic oxygen does not have a greater atomic mass than chlorine, nor does molecular oxygen. The atomic mass of chlorine is approximately 35 g/mol, while molecular (O2) oxygen has a molecular mass of 32 g/mol.
When two atomic orbitals interact, they produce two molecular orbitals.
The number of molecular orbitals in the system depends on the number of atomic orbitals that are combined. If two atomic orbitals combine, they form two molecular orbitals: a bonding orbital and an antibonding orbital. So, in general, the number of molecular orbitals in a system is equal to the number of atomic orbitals that are combined.
Molecular orbitals are formed by the overlap of atomic orbitals from different atoms in a covalent bond. These molecular orbitals have distinct shapes and energies compared to the atomic orbitals they are formed from. The number of molecular orbitals formed is equal to the number of atomic orbitals that combine.
When atomic orbitals combine constructively, they create bonding molecular orbitals, which are stable. However, when they combine destructively, they form antibonding molecular orbitals, which are less stable. This is due to the phase relationship between the atomic orbitals.
In molecular orbital theory, MO theory, molecular orbitals are "built" from atomic orbitals. A common approach is to take a linear combination of atomic orbitals (LCAO), specifically symmetry adapted linear combinations (SALC) using group theory. The formation of a bond is essentially down to the overlap of the orbitals, the orbitals being of similar energy and the atomic orbital wave functions having the correct symmetry.
When two atoms combine, the overlap of their atomic orbitals produces molecular orbitals. An atomic orbital belongs to a particular atom, whereas a molecular orbital belongs to a molecule as a whole. Much like an atomic orbital, two electrons are required to fill a molecular orbital. A bonding orbital is a molecular orbital occupied by the two electrons of a covalent bond
Molecular consists of multiple atomic orbitals
According to MO theory, overlap of two p atomic orbitals produces two molecular orbitals: one bonding (π bonding) and one antibonding (π antibonding) molecular orbital. These molecular orbitals are formed by constructive and destructive interference of the p atomic orbitals.
according to MOT each energy level can be occupied by 2 electrons which must have opposite spins these pairs of electrons considered to occupy molecular orbital. so molecular orbital is formed from the overlap of the atomic orbitals of the atoms making up the bond.
Ethylene (C₂H₄) has a total of 6 molecular orbitals formed from the combination of 2 carbon atomic orbitals and 4 hydrogen atomic orbitals. These consist of 2 bonding molecular orbitals (σ and π) and their corresponding antibonding orbitals (σ* and π*), resulting in a total of 4 occupied molecular orbitals. The σ molecular orbitals include one from the C-C bond and two from the C-H bonds, while the π molecular orbital arises from the overlap of the p orbitals on the carbon atoms.
In a bonding molecular orbital, the potential energy decreases as the bond forms between two atomic orbitals, resulting in a stable, lower-energy state compared to the individual atomic orbitals. In an antibonding molecular orbital, the potential energy increases as the two atomic orbitals interact, leading to a higher-energy, less stable configuration due to destructive interference between the atomic orbitals.
Electrons in a bonding orbital have lower energy levels than the average energy of a valence electrons in the isolated atoms between which the orbital is formed. Antibonding orbitals do not meet this criterion, so that anitbonding orbitals can be stable only in conjunction with bonding orbitals, whereas bonding orbitals can be formed without any accompanying antibonding orbitals.The molecular orbitals which is formed by the addition of atomic orbitals is called bonding molecular orbitals.The molecular orbitals which is formed by the subtraction of atomic orbitals is called antibonding molecular orbitals.