answersLogoWhite

0

What else can I help you with?

Related Questions

At what mass number does the binding energy per nucleon peak?

The binding energy per nucleon peaks at a mass number of around 56.


What is the Significance of binding energy per nucleon vary with mass number?

The binding energy per nucleon varies with mass number because it represents the average energy required to separate a nucleus into its individual nucleons. For lighter nuclei, the binding energy per nucleon increases as the nucleus becomes more stable. As nuclei become larger (higher mass number), the binding energy per nucleon decreases due to the diminishing strength of the nuclear force relative to the electrostatic repulsion between protons.


What is the total binding energy and binding energy per nucleon on helium-3 The Answer is BE 7.72MeV and BENUC 2.57MeV. I don't know the steps to get there?

To find the total binding energy Use this formula: B= (number of neutrons)(neutron mass)+ (number of protons)(proton mass) - (Atomic Mass of helium). Then to keep the units correct, multiply that entire expression by 931.5 MeV/u. This is the TOTAL binding energy, and the binding energy per nucleon can be found by dividing the number you calculate above by the total number of protons and neutrons.


When does a nucleon have more mass?

A nucleon has more mass when it is not bound to the nucleus of an atom. When the nucleon is bound to other nucleons the binding energy that keeps them together comes from the mass of the nucleon. Therefore the mass of a single nucleon will be smaller in an atom than on it's own.


What is the order of binding energy per nucleon nucleus?

The order of binding energy per nucleon for nuclei generally follows the trend that larger nuclei have higher binding energy per nucleon. This means that as you move to heavier nuclei (with more protons and neutrons), their binding energy per nucleon tends to increase. This trend is due to the strong nuclear force that holds the nucleus together becoming more efficient as the nucleus grows in size.


What does the graph of mass per nucleon vs atomic mass number look like?

The graph of binding energy per nucleon versus mass number is an analog of this graph, except it would be upside down. Iron, which has the highest binding energy per nucleon, would have the least mass per nucleon as you looked across the periodic table. Use the link below to see the graph of binding energy per nucleon plotted against mass number. If you "invert" this graph, you'll have yours. If any uncertainty exists as to what is going on with "variable" mass among the nucleons of different elements, use the link below to the related question and investigate why things are the way they are.


the mass defect for the nucleus of helium is 0.0303 amu what is the binding energy per nucleon for helium in MeV?

For helium the binding energy per nucleon is 28.3/4 = 7.1 MeV. The helium nucleus has a high binding energy per nucleon and is more stable than some of the other nuclei close to it in the periodic table.


How do you find the nuclear binding energy?

The nuclear binding energy can be calculated using Einstein's mass-energy equivalence equation, E = mc^2, where E is energy, m is mass defect (mass before minus mass after nuclear reactions), and c is the speed of light. The binding energy per nucleon can then be found by dividing the total binding energy by the number of nucleons in the nucleus.


What is blinding energy?

Nuclear binding energy is the energy that holds nucleons (protons and neutrons) together in an atomic nucleus. It is derived from what is called mass deficit. Each nucleon in the atom gives up a tiny amount of its mass when the atom is created. This mass in converted into binding energy.


How does the mass per nucleon in uranium compare with the mass per nucleon in the fission fragments or uranium?

This is not something I really know anything about, but I do know that energy is liberated in the process, so you could expect it to be less in the fission fragments. It also depends on the nucleus. Proton and neutron masses differ somewhat, so it depends on what the ratio of protons and neutrons is as well.


What happened in fission when the products have less mass than the starting material?

The binding energy per nucleon varies in different nuclei, being a maximum in the region of iron and nickel, and getting progressively less as the heavier nuclei are approached, Therefore when a uranium nucleus splits into two nuclei of lighter elements, the total binding energy is increased, and this results in a loss of mass. The destroyed mass appears as energy, from the relation E = mc2. You can read more and see the binding energy graph in the link below. It is also evident why fusion of light nuclei like hydrogen also releases energy, as in this part of the graph binding energy increases as the nuclei get heavier.


How is nuclear binding energy related to the mass defect and what implications does this relationship have for nuclear reactions and stability?

Nuclear binding energy is the energy needed to hold the nucleus together. The mass defect is the difference between the mass of a nucleus and the sum of its individual particles. The mass defect is related to nuclear binding energy through Einstein's equation Emc2. This relationship affects nuclear reactions and stability because the release of energy during nuclear reactions is due to the conversion of mass into energy, and nuclei with higher binding energy per nucleon are more stable.