Convection in any fluid will occur when the lower portion is warmer than the upper portion. The less dense warm material will tend to rise while the denser cooler material will tend to sink. While the mantle is generally though of as solid, even solids can behave as viscous liquids over millions of years.
Convection takes place in the Earth's mantle, which is the layer of hot, semi-solid rock located between the crust and the outer core. Heat from the Earth's core drives convection currents in the mantle, causing the movement of tectonic plates.
Convection currents occur in the Earth's mantle, which is the layer beneath the Earth's crust. These currents are responsible for driving the movement of tectonic plates on the Earth's surface, leading to phenomena like earthquakes and volcanic activity.
Convection currents rese and sink through the mantle and the liquid outer core. In Earth's mantle, large amounts of heat are transferred by convection currents. Heat from the core and the mantle itself causes convection currents in the mantle.
The most important process that takes place in the mantle is convection. This process involves the transfer of heat within the mantle, driving the movement of tectonic plates on the Earth's surface. Convection in the mantle is responsible for various geological phenomena such as seafloor spreading, subduction zones, and volcanic activity.
The two layers below Earth's surface where convection takes place are the mantle and the outer core. In the mantle, convection currents are responsible for plate tectonics and the movement of Earth's lithosphere. In the outer core, convection currents drive the movement of molten iron that generates Earth's magnetic field.
athenosphere and lithosphere
Convection takes place in the Earth's mantle, which is the layer of hot, semi-solid rock located between the crust and the outer core. Heat from the Earth's core drives convection currents in the mantle, causing the movement of tectonic plates.
Convection currents occur in the Earth's mantle, which is the layer beneath the Earth's crust. These currents are responsible for driving the movement of tectonic plates on the Earth's surface, leading to phenomena like earthquakes and volcanic activity.
Convection currents are located in the astenosphere in boiling water and lots of other places
Mantle is one, and I'm gonna guess core.
Convection currents rese and sink through the mantle and the liquid outer core. In Earth's mantle, large amounts of heat are transferred by convection currents. Heat from the core and the mantle itself causes convection currents in the mantle.
The mantle layer with more convection is the upper mantle, which has a higher temperature and undergoes vigorous convection currents. In contrast, the lower mantle has less convection due to its higher pressure and lower temperature, leading to slower convective movement.
The most important process that takes place in the mantle is convection. This process involves the transfer of heat within the mantle, driving the movement of tectonic plates on the Earth's surface. Convection in the mantle is responsible for various geological phenomena such as seafloor spreading, subduction zones, and volcanic activity.
Most convection currents exist in the mantle, the layer below the Earth's crust. As the semi-molten rock heats up, it rises closer to the surface, and it sinks as it cools. This is how plate tectonics works, as the crust's plates move on these currents.
Convection
convection takas place wen iron piece is heated
The two layers below Earth's surface where convection takes place are the mantle and the outer core. In the mantle, convection currents are responsible for plate tectonics and the movement of Earth's lithosphere. In the outer core, convection currents drive the movement of molten iron that generates Earth's magnetic field.