the theaory of gravity when lifted by a hot air substance is qiute simple if you think about it
The simple answer is because the pressure remains the same. When pressure remains constant, the change in volume will be directly proportional to the change in temperature. The air molecules release energy as they travel around inside the balloon. What we call pressure is technically the force of the air molecules colliding with the inside of the balloon and each other. The kinetic energy is related to the speed of the molecules. The faster the molecules are moving, the greater the kinetic energy. The greater the kinetic energy, the greater the pressure in the inside of the balloon. The outside air is doing the same thing to outside of the balloon. Therefore, the pressure pushing out is equal to the pressure pushing in. Temperature decreases because the molecules inside the balloon are releasing their energy in the form of heat as they interact with each other. In fact, they heat energy passes through the balloon and is absorbed by the air on the outside. Over time, more energy is released, and the temperature drops. The volume of the balloon decreases in order to maintain a constant pressure. As the surface area decreases, the total pressure pushing in also decreases so that it always equals the pressure pushing out.
The particles in a substance slow down when the average kinetic energy of the particles decreases. As the average kinetic energy decreases, the internal energy decreases, and so the thermal energy decreases. As the thermal energy of the substance decreases, the temperature decreases.
Burning fossil fuels turns potential energy into kinetic energy. Kinetic energy is energy in motion, which can be used to do work.
Temperature is a measure of the average kinetic energy of the particles in a substance, while thermal energy is the total kinetic energy of all the particles in a substance. Temperature is an intensive property, meaning it does not depend on the amount of material present, while thermal energy is an extensive property, meaning it does depend on the amount of material present.
The warm temperature inside the greenhouse can cause the air molecules inside the balloon to expand, increasing the pressure inside. This can lead to the balloon either expanding in size or potentially bursting.
As the average kinetic energy of a substance increases, the temperature will increase.
The kinetic energy of air inside a balloon is higher than that of the outside air because the air molecules in a confined space have more motion due to compression. When the balloon pops or deflates, the high-energy air inside will quickly mix with the lower-energy outside air, equalizing the kinetic energy.
The molecules in the balloon can't take the pressure inside of it so it bursts.
As the average kinetic energy of the particles in a substance increases, the temperature of the substance also increases. This is because temperature is a measure of the average kinetic energy of the particles in a substance. So, when the average kinetic energy increases, the temperature increases as well.
As the temperature of a gas decreases, the average kinetic energy of the gas particles also decreases. This is because temperature is a measure of the average kinetic energy of the particles in a substance.
The balloon would shrink because the average kinetic energy of the gas molecules in the balloon decreases when the temperate decreases. Go and try it is a pretty fun!
Yes, both kinetic energy and potential energy can increase when a gas-filled balloon is rising in air. As the balloon rises, it gains potential energy due to its increased height above the ground. At the same time, the balloon also gains kinetic energy as it accelerates upward, increasing its speed.
The energy involved in a balloon expanding is primarily potential energy, which is stored in the elastic material of the balloon as it is stretched. When the balloon is released, this potential energy is converted into kinetic energy, causing the balloon to expand.
The change in an electron's kinetic energy is the difference between its initial kinetic energy and its final kinetic energy.
To find the change in kinetic energy of an object, you can use the formula: Change in Kinetic Energy Final Kinetic Energy - Initial Kinetic Energy. This involves calculating the kinetic energy of the object at two different points in time and then subtracting the initial kinetic energy from the final kinetic energy to determine the change.
The average kinetic energy of particles is temperature.
The kinetic energy of the helium gas inside the balloon is due to the random motion of its molecules. As the gas molecules move and collide with each other and the walls of the balloon, they transfer energy in the form of kinetic energy. This energy contributes to the pressure inside the balloon and helps keep it afloat.