According to Avagadro's number one mole of any substance is equal to 6.022*10^23 particles.
Knowing this you can calculate the number of atoms in 4.25 moles of carbon tetrabromide easily:
4.25(moles of carbon tetrabromide) * 6.022*10^23(atoms) = 2.559*10^24
So 2.559*10^24 atoms are present in 4.25 moles of carbon tetrabromide.
There are 6.022 x1023 atoms of carbon per mole. So 2.85 * 6.022x1023 is the answer ... 1.72 x1024 atoms of carbon.
Since there is one carbon atom per mole in carbon tetrafluoride, the answer is 3.27 times Avogadro's Number or about 1.97 X 1024 atoms.
6. 1 mole of CS2 contains 1 mole of carbon and 2 of sulfur.
There are (6.022 \times 10^{23}) atoms in one mole of carbon. Therefore, in (1.0 \times 10^{-4}) moles of carbon, there would be (6.022 \times 10^{23} \times 1.0 \times 10^{-4} = 6.022 \times 10^{19}) carbon atoms.
10 moles of calcium has more atoms than 10 moles of carbon, as calcium has a higher atomic number and atomic weight compared to carbon. Each mole contains Avogadro's number of atoms, so the element with the larger atomic weight will have more atoms in 10 moles.
There are 6.022 x1023 atoms of carbon per mole. So 2.85 * 6.022x1023 is the answer ... 1.72 x1024 atoms of carbon.
4,37.10e-18 C atoms are equivalent to 7,25.10e-6 moles.
There are 9.33 moles of carbon in 5.62 atoms of carbon.
There are twice as many oxygen atoms as carbon atoms in carbon dioxide, so 100.0 moles of carbon dioxide would contain 200.0 moles of oxygen atoms.
Since there is one carbon atom per mole in carbon tetrafluoride, the answer is 3.27 times Avogadro's Number or about 1.97 X 1024 atoms.
To convert atoms to moles, you divide the number of atoms by Avogadro's number, which is 6.022 x 10^23 atoms/mol. So, 1.53 x 10^24 atoms of carbon divided by Avogadro's number is equal to 2.54 moles of carbon.
1.50 moles C9H8O4 (9 moles C/1 mole C9H8O4)(6.022 X 1023/1 mole C)= 8.13 X 1024 carbon atoms===================
6,1x10-3 moles of carbon 36,7350592277.1020 atoms.
Since each mole of carbon dioxide molecules contains two moles of oxygen atoms, as indicated by the formula CO2 for carbon dioxide, half a mole of carbon dioxide will have one mole of oxygen atoms.
To determine the number of moles of ibuprofen containing 7.4x10^25 atoms of Carbon, we first find the number of moles present in 1 mole of ibuprofen. Ibuprofen's molecular formula is C13H18O2, so 1 mole of ibuprofen contains 13 moles of Carbon atoms. To find the moles of ibuprofen containing 7.4x10^25 Carbon atoms, we divide 7.4x10^25 by 13.
Each molecule of C6H6 contains 6 carbon atoms, so when 1 mole of C6H6 decomposes, 6 moles of carbon atoms are obtained. Therefore, in a 1.68 mole sample of C6H6, 6 × 1.68 = 10.08 moles of carbon atoms can be obtained from the decomposition.
1 mole of CO2 has 1 mole of carbon atoms and 2 moles of oxygen atoms. So, 25 mole of CO2 has 25 moles of carbon atoms and 50 moles of oxygen atoms.