answersLogoWhite

0

Emission levels means the amount of something that is being emitted. For example, we want to lower the emission levels of factory pollution that is going into the air.

User Avatar

Wiki User

13y ago

What else can I help you with?

Continue Learning about Earth Science

What do Each of the colored lines in hydrogen's emission spectrum corresponds with?

Each colored line in hydrogen's emission spectrum corresponds to a specific transition of an electron between energy levels in the hydrogen atom. The wavelengths of these lines are unique to each transition, creating a distinct pattern that can be used to identify elements and their energy levels.


According to Bohr's model of the hydrogen atom how is hydrogen's emission spectrum produced?

In Bohr's model of the hydrogen atom, hydrogen's emission spectrum is produced when electrons jump between different energy levels within the atom. When an electron moves from a higher energy level to a lower one, it releases energy in the form of light, which is observed as distinct spectral lines in the emission spectrum. The energy of the emitted light corresponds to the energy difference between the initial and final energy levels of the electron.


The atomic emission spectra of a sodium atom on earth and of a sodium atom in the sun would be?

The atomic emission spectra of a sodium atom on Earth and in the Sun would be similar, as they both involve the same transitions between energy levels in the sodium atom. However, the intensity and specific wavelengths of the spectral lines may differ due to the different conditions and temperatures present on Earth compared to in the Sun.


According to Bohr model of hydrogen atom how is hydrogen's emission spectrum produced?

In the Bohr model of the hydrogen atom, electrons can transition between energy levels by emitting or absorbing photons. When an electron falls from a higher energy level to a lower one, it releases energy in the form of a photon, which corresponds to a specific wavelength. The emission spectrum of hydrogen is produced when electrons transition from higher to lower energy levels, resulting in the release of photons with distinct wavelengths that correspond to specific spectral lines.


Why do you know that lithium salts will never emit green light and copper salts will never emit red light?

Lithium salts do not emit green light because their electron transitions do not correspond to the energy levels associated with green light emission. Similarly, copper salts do not emit red light because the energy levels of their electron transitions do not produce red light emission. Each element's electron transitions are specific to its atomic structure, dictating which colors of light are emitted.

Related Questions

Is the engine thermostat part of the emission system?

No, but the temperature senders are part of the emission system. If the thermostat malfunctions, the emission system will not operate at optimum levels.


Why does helium have more emission lines than hydrogen?

Helium has more emission lines than hydrogen because it has more electrons and energy levels, leading to more possible transitions between these levels and the emission of different wavelengths of light.


What statement of emission spectra is correct?

Emission spectra consist of discrete, colored lines at specific wavelengths, corresponding to the emission of photons as electrons transition from higher to lower energy levels. Each element has a unique emission spectrum due to its specific electron configuration and energy levels. Emission spectra are useful for identifying elements present in a sample and are commonly used in analytical chemistry and astronomy.


How do electrons jumping between energy levels contribute to the emission of light in atoms?

When electrons jump between energy levels in atoms, they release energy in the form of light. This emission of light occurs when electrons move from higher energy levels to lower energy levels, releasing photons in the process.


Why cant an atom in the ground state produce emission lines?

An atom in the ground state does not have any electrons excited to higher energy levels. Without these excited electrons transitioning back to lower energy levels, there is no emission of photons with specific wavelengths that correspond to emission lines.


How does quantum theory explain the emission spectra of atoms?

Quantum theory explains the emission spectra of atoms by proposing that electrons in atoms can only exist in specific energy levels. When an electron moves from a higher energy level to a lower one, it emits a photon of light with a specific energy corresponding to the difference in energy levels. This results in the unique emission spectra observed for each element.


Which scientists postulated that the sharp lines in the emission spectra of elements are caused by electrons moving from high energy levels to low energy levels?

Niels Bohr proposed this model in 1913. His model of the atom suggested that electrons occupy specific energy levels and emit or absorb energy in quanta when they move between these levels, corresponding to the sharp lines observed in the emission spectra of elements.


What determines an elements emission spectrum?

The electron energy levels.


Is an atomic emission spectrum a continuous range of colors?

No, an atomic emission spectrum is not a continuous range of colors. It consists of discrete lines of specific wavelengths corresponding to the emission of light from excited atoms when they return to lower energy levels. Each element has a unique atomic emission spectrum due to its unique arrangement of electrons.


How often should you change the exo terra solar glo lamp?

Every six months - to maintain emission levels.


Why would the absorption spectrum of each element have lines in the same places as in its emission spectrum?

The absorption spectrum of an element have lines in the same places as in its emission spectrum because each line in the emission spectrum corresponds to a specific transition of electrons between energy levels. When light is absorbed by the element, electrons move from lower energy levels to higher ones, creating the same lines in the absorption spectrum as the emission spectrum. The frequencies of light absorbed and emitted are the same for a specific element, resulting in matching lines.


When an object is heated to higher temperatures what happens to its wavelength of emission?

When an object is heated to higher temperatures, its wavelength of emission decreases. This is because higher temperatures result in higher energy levels of emitted photons, corresponding to shorter wavelengths. This phenomenon is described by Wien's displacement law.